Answer:
IMA = 2.5 metres
EFFICIENCY = 80%
Explanation:
The AMA of a machine is referred to as the Actual Mechanical Advantage of a machine, calculated as the ratio of the output to the input force.
The Ideal Mechanical Advantage is the ratio of the input distance to the output distance.
From the diagram, the input distance which is also the distance moved by effort = 5metres
The load distance (output distance) = 2 metres
IMA = INPUT DISTANCE / OUTPUT DISTANCE
IMA = 5metres / 2 metres = 2.5 meters
Efficiency is the ratio of AMA TO IMA
AMA = 2, IMA = 2.5
EFFICIENCY = AMA / IMA
EFFICIENCY = (2 / 2.5) × 100%= 0.8 × 100%
EFFICIENCY = 80%
There's not enough information to find an answer.
I think the idea here is that in descending (416 - 278) = 138 meters,
the glider gives up some gravitational potential energy, which
becomes kinetic energy at the lower altitude. This is all well and
good, but we can't calculate the difference in potential energy
without knowing the mass of the glider.
Explanation:
Given:
v₀ = 0 m/s
a = 3 m/s²
t = 4 s
Find: Δx and v
Δx = v₀ t + ½ at²
Δx = (0 m/s) (4 s) + ½ (3 m/s²) (4 s)²
Δx = 24 m
v = at + v₀
v = (3 m/s²) (4 s) + 0 m/s
v = 12 m/s
Answer:
The answer to your question is 1.35 Watts
Explanation:
Data
Work = W = 5 J
time = t = 3.7 s
Power = P = ?
Formula
Power is a rate in which work is done or energy is transferred over time
P =
Substitution
Result
P = 1.35 W
Answer:
2.5 N
because Average speed is equal to distance divided by time