Initial [ HCO2H] = moles * volume
=0.35 moles * 1 L = 0.35 M
by using ICE table:
HCO2H ↔ H+ + HCO2-
initial 0.35 M 0 0
change - X +X +X
Equ (0.35 - X) X X
∴ Ka = [H+][HCO2-] / [HCO2H]
by substitution:
1.8 x 10^-4 = X^2 / (0.35-X) by solving for X
∴ X = 0.0079 or 7.9 x 10^-3
∴ [H+] = X = 7.9 x 10^-3 M
Answer: 
Explanation:
The Ideal Gas equation is:
(1)
Where:
is the pressure of the gas
the number of moles of gas
is the gas constant
is the absolute temperature of the gas in Kelvin.
is the volume
It is important to note that the behavior of a real gas is far from that of an ideal gas, taking into account that <u>an ideal gas is a single hypothetical gas</u>. However, under specific conditions of standard temperature and pressure (T=0\°C=273.15 K and P=1 atm=101,3 kPa) one mole of real gas (especially in noble gases such as Argon) will behave like an ideal gas and the constant R will be
.
However, in this case we are not working with standard temperature and pressure, therefore, even if we are working with Argon, the value of R will be far from the constant of the ideal gases.
Having this clarified, let's isolate
from (1):
(2)
Where:
is the absolute temperature of the gas in Kelvin.

(3)
Finally:
Seawater found to be seeping up through the canyon floor is why
scientists think Grand Canyon was once covered by an ocean.
Grand cayon is located in Arizona, United States and comprises of a lot of
fossil records and rocks which makes it one of the best sites for geological
study.
The Grand cayon was found to be seeping through its floor which made
scientists think it was once covered by an ocean years ago.
Read more about Grand cayon on brainly.com/question/20629780
Answer:

Explanation:
Hello!
In this case, according to the ideal gas equation ratio for two states:

Whereas both n and R are cancelled out as they don't change, we obtain:

Thus, by solving for the final pressure, we obtain:

Now, since initial conditions are 1.00 atm, 273.15 K and 17 L and final temperature and volume are 94 + 273 = 367 K and 12 L respectively, the resulting pressure turns out to be:

Best regards!