Answer:
1. London dispersion
Explanation:
Sulphur trioxide ( SO₃ ) -
The chemical compound SO₃ is planar in structure , the only intermolecular forces shown by SO₃ is the London forces .
dipole - dipole is not observed in this compound , as it is not possible to generate poles between the sulfur and oxygen atom due to very less difference in the electronegativity .
Hydrogen bonding is also not observed , because there is not hydrogen atom .
Hence , only London forces are observed in SO₃ .
The question is incomplete, complete question is :
Determine the pH of an HF solution of each of the following concentrations. In which cases can you not make the simplifying assumption that x is small? (
for HF is
.)
[HF] = 0.280 M
Express your answer to two decimal places.
Answer:
The pH of an 0.280 M HF solution is 1.87.
Explanation:3
Initial concentration if HF = c = 0.280 M
Dissociation constant of the HF = 

Initially
c 0 0
At equilibrium :
(c-x) x x
The expression of disassociation constant is given as:
![K_a=\frac{[H^+][F^-]}{[HF]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BF%5E-%5D%7D%7B%5BHF%5D%7D)


Solving for x, we get:
x = 0.01346 M
So, the concentration of hydrogen ion at equilibrium is :
![[H^+]=x=0.01346 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dx%3D0.01346%20M)
The pH of the solution is ;
![pH=-\log[H^+]=-\log[0.01346 M]=1.87](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D%3D-%5Clog%5B0.01346%20M%5D%3D1.87)
The pH of an 0.280 M HF solution is 1.87.
Answer:
Carbon - 13
Explanation:
For most of the elements other than that of hydrogen, the isotopes are named for the mass number.
Example : Carbon atoms with 6 neutrons have mass number of 12 ( as
), so they are known as carbon-12.
Given that:
Protons = 6
Neutrons = 7
Mass = 6 + 7 = 13
So the name is Carbon - 13 . The symbol is 
I believe the answer is C which is supporting a variety of organisms, cleaning oil from oceans, producing oxygen.