Answer:
A<u> covalent bond</u> will hold them together.
Explanation:
The two bromine atoms will share electrons to build a stronger bond and have a full valence outer shell (which makes them stable).
Hope this helps!
CH3CH2OH + 3O2 = 2CO2 + 3H2O
Basically you do trial and error on both sides so they can be equal
We write DE = q+w, where DE is the internal energy change and q and w are heat and work, respectively.
(b)Under what conditions will the quantities q and w be negative numbers?
q is negative when heat flows from the system to the surroundings, and w is negative when the system does work on the surroundings.
As an aside: In applying the first law, do we need to measure the internal energy of a system? Explain.
The absolute internal energy of a system cannot be measured, at least in any practical sense. The internal energy encompasses the kinetic energy of all moving particles in the system, including subatomic particles, as well as the electrostatic potential energies between all these particles. We can measure the change in internal energy (DE) as the result of a chemical or physical change, but we cannot determine the absolute internal energy of either the initial or the final state. The first law allows us to calculate the change in internal energy during a transformation by calculating the heat and work exchanged between the system and its surroundings.
Answer:
As the thermal energy of matter increases, its particles usually spread out, causing the substance to expand.
Explanation:
<em> i have a book about this stuff</em>
<span>Since these molecules are all non-polar, the only intermolecular force of attraction will be London dispersion forces. Since these increase by the size of the molecule, the boiling points will decrease in the same order:
Parafin > Heptadecane > hexane > 2,2-dimethylbutane > propane
For these two, hexane > 2,2-dimethylbutane, dispersion forces are greater in a molecule which is longer and unbranched compared to one which is branched and more compact.</span>