Boyle Law says “the pressure of fixed amount of ideal gas which is at constant temperature is
inversely proportional to its volume".<span>
P = 1/V
<span>Where, P is pressure of the ideal gas and V is volume of the ideal gas.</span>
<span>For two situations, this law can be added as;
P</span>₁V₁ = P₂V₂<span>
</span><span>14 lb/in² x V₁ = 70 lb/in² x 500 mL</span><span>
</span><span>V₁ =
2500 mL</span><span>
Hence, the needed volume of atmospheric air = 2500
mL
<span>Here, we made two </span>assumptions. They are,
1. The
atmospheric air acts as ideal gas.
2.
Temperature is a constant.
<span>We didn't convert the units to SI units since
converting volume and pressure are products of two numbers, they will cut off. </span></span></span>
This question is incomplete. Luckily, I found the same problem which is shown in the attached picture. To answer the question, we must know how the size and charge affect the lattice energy. The answer is: lattice energy increases with the increasing charge of the ions, and decreasing radius of the atoms.
<em>Therefore, the ranking would be: A < B < C</em>.
Because all the compounds are at the same concentration, the one that can produce more particles in solution will be the one that will raise the boiling point the most.
<span>A. 2.0 M (NH4)3PO4 will produce 4 particles per molecule formula</span>
Answer:
"The core of the Sun extends from the center to about 20–25% of the solar radius. It has a density of up to 150 g/cm3 (about 150 times the density of water) and a temperature of close to 15.7 million kelvins (K)"
- goggle