the surface temp of main sequence star increase as diameter increases
The bond energy of each carbon-oxygen bond in carbon dioxide is d. 736 kJ
Since the chemical reaction is 2CO + O₂ → 2CO₂ and the total bond energy of the products carbon dioxide CO₂ is 1,472 kJ.
Since from the chemical reaction, we have 2 moles of CO₂ which gives 1,472 kJ and there are two carbon-oxygen, C-O bonds in CO₂, then
2 × C-O bond = 1,472 kJ
1 C-O bond = 1.472 kJ/2
C-O bond = 736 kJ
So, the bond energy of each carbon-oxygen bond in carbon dioxide is d. 736 kJ
Learn more about bond energy here:
brainly.com/question/21670527
Answer:
Half life is 6 years.
Explanation:
T½ = In2 / λ
Where λ = decay constant.
But N = No * e^-λt
Where N = final mass after a certain period of time
No = initial mass
T = time
N = 0.625g
No = 10g
t = 24 years
N = No* e^-λt
N / No = e^-λt
λ = -( 1 / t) In N / No (inverse of e is In. Check logarithmic rules)
λ = -(1 / 24) * In (0.625/10)
λ = -0.04167 * In(0.0625)
λ = -0.04167 * (-2.77)
λ = 0.1154
T½ = In2 / λ
T½ = 0.693 / 0.1154
T½ = 6.00 years.
The half life of radioactive cobalt-60 is 6 years
The rate of a chemical reaction can be raised by increasing the surface area of a solid reactant. This is done by cutting the substance into small pieces, or by grinding it into a powder.