(a) The time for the capacitor to loose half its charge is 2.2 ms.
(b) The time for the capacitor to loose half its energy is 1.59 ms.
<h3>
Time taken to loose half of its charge</h3>
q(t) = q₀e-^(t/RC)
q(t)/q₀ = e-^(t/RC)
0.5q₀/q₀ = e-^(t/RC)
0.5 = e-^(t/RC)
1/2 = e-^(t/RC)
t/RC = ln(2)
t = RC x ln(2)
t = (12 x 10⁻⁶ x 265) x ln(2)
t = 2.2 x 10⁻³ s
t = 2.2 ms
<h3>
Time taken to loose half of its stored energy</h3>
U(t) = Ue-^(t/RC)
U = ¹/₂Q²/C
(Ue-^(t/RC))²/2C = Q₀²/2Ce
e^(2t/RC) = e
2t/RC = 1
t = RC/2
t = (265 x 12 x 10⁻⁶)/2
t = 1.59 x 10⁻³ s
t = 1.59 ms
Thus, the time for the capacitor to loose half its charge is 2.2 ms and the time for the capacitor to loose half its energy is 1.59 ms.
Learn more about energy stored in capacitor here: brainly.com/question/14811408
#SPJ1
Answer:
The maximum velocity is 1.58 m/s.
Explanation:
A spring pendulum with stiffness k = 100N/m is attached to an object of mass m = 0.1kg, pulls the object out of the equilibrium position by a distance of 5cm, and then lets go of the hand for the oscillating object. Calculate the achievable vmax.
Spring constant, K = 100 N/m
mass, m = 0.1 kg
Amplitude, A = 5 cm = 0.05 m
Let the angular frequency is w.

The maximum velocity is

Pressure is the amount of force per unit area. In formula it
is,
P = F ÷ A
P = 7000 N ÷ 0.4 m2
P = 17,500 N/m2
The amount of pressure the truck exerts on the piston is
17,500 N/m2
All except C, feelings are not physical.