Answer:
b) N = 560 N, c) fr = 138.56 N, d) μ = 0.247
Explanation:
a) In the attachment we can see the free body diagram of the system
b) Let's write Newton's second law on the y-axis
N + T_y -W = 0
N = W -T_y
let's use trigonometry for tension
sin θ = T_y / T
cos θ = Tₓ / T
T_y = T sin θ
Tₓ = T cos θ
we substitute
N = W - T sin 30
we calculate
N = 640 - 160 sin 30
N = 560 N
c) as the system goes at constant speed the acceleration is zero
X axis
Tₓ - fr = 0
Tₓ = fr
we substitute and calculate
fr = 160 cos 30
fr = 138.56 N
d) the friction force has the formula
fr = μ N
μ = fr / N
we calculate
μ = 138.56 / 560
μ = 0.247
Answer:
-1.2 kg - m/s
Explanation:
And we need to find out the change in momentum of the body . Here ,
- velocity before collision (u) = 10m/s
- velocity after collision (v) = 2m/s .
We know that momentum is defined as amount of motion contained in a body . Mathematically ,
Therefore change in momentum will be,
Since the direction of velocity changes after the collision , the velocity will be -2m/s .
Answer:
2632 foot-pound
Explanation:
Work done: Work is said to be done when ever a force moves a body through a given distance. The S.I unit of force is Newton (N).
From the question,
The expression for work done is given as,
W = Fdcos∅......................... Equation 1
Where W = work done, F = force, d = distance, ∅ = angle between the force and the horizontal.
Given: F = 32 lbs, d = 90 feet, ∅ = 24°
substitute into equation 1
W = 32×90×cos24
W = 2880(0.914)
W = 2632.32
W = 2632 foot-pound
The movement of the molten rocks underneath the plates
That would be a balanced force because the forces cancel each other out.