The pH of the buffer is 6.1236.
Explanation:
The strength of any acid solution can be obtained by determining their pH. Even the buffer solution strength of the weak acid can be determined using pH. As the dissociation constant is given, we can determine the pKa value as the negative log of dissociation constant value.
![pKa=-log[H] = - log [ 5.66 * 10^{-7}]\\ \\pka = 7 - log (5.66)=7-0.753=6.247\\\\pka = 6.247](https://tex.z-dn.net/?f=pKa%3D-log%5BH%5D%20%3D%20-%20log%20%5B%205.66%20%2A%2010%5E%7B-7%7D%5D%5C%5C%20%5C%5Cpka%20%3D%207%20-%20log%20%285.66%29%3D7-0.753%3D6.247%5C%5C%5C%5Cpka%20%3D%206.247)
The pH of the buffer can be known as
![pH = pK_{a} + log[\frac{[A-]}{[HA]}}]](https://tex.z-dn.net/?f=pH%20%3D%20pK_%7Ba%7D%20%2B%20log%5B%5Cfrac%7B%5BA-%5D%7D%7B%5BHA%5D%7D%7D%5D)
The concentration of ![[A^{-}] = Moles of [A]/Total volume = 0.608/2 = 0.304 M\\](https://tex.z-dn.net/?f=%5BA%5E%7B-%7D%5D%20%3D%20Moles%20of%20%5BA%5D%2FTotal%20volume%20%3D%200.608%2F2%20%3D%200.304%20M%5C%5C)
Similarly, the concentration of [HA] = 
Then the pH of the buffer will be
pH = 6.247 + log [ 0.304/0.404]

So, the pH of the buffer is 6.1236.
Because that solid is frozen liquid, so when it gets heated up, it will melt. Like Ice.
Hope I Helped! :)
Answer:
16.6 mg
Explanation:
Step 1: Calculate the rate constant (k) for Iodine-131 decay
We know the half-life is t1/2 = 8.04 day. We can calculate the rate constant using the following expression.
k = ln2 / t1/2 = ln2 / 8.04 day = 0.0862 day⁻¹
Step 2: Calculate the mass of iodine after 8.52 days
Iodine-131 decays following first-order kinetics. Given the initial mass (I₀ = 34.7 mg) and the time elapsed (t = 8.52 day), we can calculate the mass of iodine-131 using the following expression.
ln I = ln I₀ - k × t
ln I = ln 34.7 - 0.0862 day⁻¹ × 8.52 day
I = 16.6 mg
<span>There are few main factors affecting the atomic radii, the outermost electrons and the protons in the nucleus and also the shielding of the internal electrons. I would speculate that the difference in radii is given by the electron clouds since the electrons difference in these two elements is in the d orbital and both has at least 1 electron in the 4s (this 4s electron is the outermost electron in all the transition metals of this period). The atomic radio will be mostly dependent of these 4s electrons than in the d electrons. Besides that, you can see that increasing the atomic number will increase the number of protons in the nucleus decreasing the ratio of the atoms along a period. The Cu is an exception and will accommodate one of the 4s electrons in the p orbital.
</span><span>Regarding the density you can find the density of Cu = 8.96g/cm3 and vanadium = 6.0g/cm3. This also correlates with the idea that if these two atoms have similar volume and one has more mass (more protons; density is the relationship between m/V), then a bigger mass for a similar volume will result in a bigger density.</span>
Answer:
all good. tell me about your day