<h3>Answer:</h3>
18.75 grams
<h3>Explanation:</h3>
- Half-life refers to the time taken by a radioactive material to decay by half of the original mass.
- In this case, the half-life of element X is 10 years, which means it takes 10 years for a given mass of the element to decay by half of its original mass.
- To calculate the amount that remained after decay we use;
Remaining mass = Original mass × (1/2)^n, where n is the number of half-lives
Number of half-lives = Time for the decay ÷ Half-life
= 40 years ÷ 10 years
= 4
Therefore;
Remaining mass = 300 g × (1/2)⁴
= 300 g × 1/16
= 18.75 g
Hence, a mass of 300 g of an element X decays to 18.75 g after 40 years.
Answer:
Potassium cation = K⁺²
Explanation:
The metal cation in K₂SO₄ is K⁺². While the anion is SO₄²⁻.
All the metals have tendency to lose the electrons and form cation. In given compound the metal is potassium so it should form the cation. The overall compound is neutral.
The charge on sulfate is -2. While the oxidation state of potassium is +1. So in order to make compound overall neutral there should be two potassium cation so that potassium becomes +2 and cancel the -2 charge on sulfate and make the charge on compound zero.
2K⁺² , SO₄²⁻
K₂SO₄
The rate of the backward reaction increases
Explanation:
It is evident that if the reaction is left to proceed spontaneously, the forward reaction is favored because it results in a decrease in pressure in the system (The total reactants have 5 moles and the products have 3 in total).
Increasing H₂O concentration is then reaction, therefore, stymies the forward reaction and favors the reserves reaction. This is because the reverse reaction will lead to reduced pressure.
Riley can either change the surface area of the object or can change the slipperiness of the material.
Since medals form cations
nonmedals form anions