Answer:
90.3 kJ/mol
Explanation:
Let's consider the following thermochemical equation.
2 NO(g) + O₂(g) → 2 NO₂(g) ∆H°rxn = –114.2 kJ
We can find the standard enthalpy of formation for NO using the following expression.
∆H°rxn = 2 mol × ΔH°f(NO₂(g)) - 2 mol × ΔH°f(NO(g)) - 1 mol × ΔH°f(O₂(g))
∆H°rxn = 2 mol × ΔH°f(NO₂(g)) - 2 mol × ΔH°f(NO(g)) - 1 mol × 0 kJ/mol
∆H°rxn = 2 mol × ΔH°f(NO₂(g)) - 2 mol × ΔH°f(NO(g))
ΔH°f(NO(g)) = (2 mol × ΔH°f(NO₂(g)) - ∆H°rxn) / 2 mol
ΔH°f(NO(g)) = (2 mol × 33.2 kJ/mol + 114.2 kJ) / 2 mol
ΔH°f(NO(g)) = 90.3 kJ/mol
If I remember correctly, it would be B. A very large amount of energy is produced from a tremendous mass.
Answer:
5.231 L.
Explanation:
- Molarity is the no. of moles of solute per 1.0 L of the solution.
<em>M = (no. of moles of KCl)/(Volume of the solution (L))</em>
<em></em>
M = 6.5 M.
no. of moles of solute = 34.0 mol,
Volume of the solution = ??? L.
∴ (6.5 M) = (34.0 mol)/(Volume of the solution (L))
∴ (Volume of the solution (L) = (34.0 mol)/(6.5 M) = 5.231 L.
Answer:
answer is a because drugs do so to the person.
It has to be A or B bc c and d are just dumb answers