<h3><u>Answer</u>;</h3>
4) size
<h3><u>Explanation</u>;</h3>
- The mineral’s physical properties are used in identifying minerals and are determined by its chemical composition and crystal structure.
- <u>Streak</u> is the color of the mineral in powdered form and since it is a more accurate illustration of the mineral’s color, its is a more reliable property of minerals than color for identification.
- <u>Hardness</u> is one of the better properties of minerals to use for identifying a mineral. Hardness is a measure of the mineral’s resistance to scratching.
- <u>Density</u> may be used to identify minerals. It is used to describe the amount of matter in a certain amount of space. Substances that have more matter packed into a given space have higher densities.
The arrangement of electron pairs around CH4 and NH3, According to the VSEPR model is the same, because in each case there are the same number of electron pairs around the central atom. So the NH3 and CH4 arrangement of electron pairs is the same because in each case there are the same number of electron pairs around the central atom.
We have that energy=specific heat * change in temperature * mass. Thus, we have the final temperature (22) minus the initial temperature (55) to equal -33 as our change in temperature. Our specific heat is in J/g*C, so we're good with that because g stands for grams and the aluminium is measured in grams. As there are 10 grams of aluminum, we have

as our final temperature
An exothermic reaction would release energy and would therefore lose heat itself, while an endothermic reaction would absorb energy and gain heat. Therefore, losing heat would be an exothermic reaction
Feel free to ask further questions!
<u>Answer:</u> The value of
for the given chemical reaction is 0.1415
<u>Explanation:</u>
Equilibrium constant in terms of partial pressure is defined as the ratio of partial pressures of the products and the reactants each raised to the power their stoichiometric ratios. It is expressed as 
For a general chemical reaction:

The expression for
is written as:

For the given chemical equation:

The expression for
for the following equation is:

We are given:

Putting values in above equation, we get:

The value of
for the given chemical reaction is 0.1415
Answer:
C₁₂H₂₂O₁₁ (C₁₂H₂₂O₁₁ ).
Explanation:
The empirical formula is obtained when we divide the molecular formula with a whole number giving the simplest ratio of all the elements (in whole number).
a) C₁₂H₂₂O₁₁ :
There is no number with which we can divide the ratio further to get a simpler formula hence the molecular formula of the given compound is the empirical formula of the compound. Hence it is correct.
(C₁₂H₂₂O₁₁),
(b) C₈H₁₂O₄
The empirical formula can be obtained by dividing the formula with "4"
The empirical formula would be
(C₂H₃O)
(c) H₂O₂
The empirical formula would be (H₁O₁)