Answer:
On the periodic table, electronegativity generally increases as you move from left to right across a period and decreases as you move down a group. As a result, the most electronegative elements are found on the top right of the periodic table, while the least electronegative elements are found on the bottom left.
Explanation:
Make sure to edit so you don't get copy-writed.
When two air masses meet together, the boundary between the two is called a weather front. At a front, the two air masses have different densities, based on temperature, and do not easily mix. One air mass is lifted above the other, creating a low pressure zone.
Explanation:
Earlier, we located the valence electrons for elements Z < 20 by drawing modified Bohr structures. We can obtain these values quicker by referring to the roman numeral numbers above each family on the periodic table. The total number of valence electrons for an atom can vary between one and eight. If an element is located on the left side of the table (metal) and has less than three valence electrons, it will lose its valence in order to become stable and achieve an octet. In contrast, elements on the right side of the table (nonmetals) will gain up to eight electrons to achieve octet status.
Atomic weight of an element can be calculated as follows:
average atomic weight =
(atomic weight of first isotope)(its percentage of abundance) +
(atomic weight of second isotope)(its percentage of abundance)
average atomic weight = 98.225 amu
atomic weight of first isotope = 97.780 amu
its percentage of abundance = 1 - 0.417 = 0.583
atomic weight of second isotope = ??
its percentage of abundance = 0.417
So, just substitute in the above equation to get the atomic weight of the second isotope as follows:
98.225 = (97.78)(0.583) + (mass2)(0.417)
atomic weight of second isotope = 98.847 amu
<h2>
Answer:</h2>
Option B. Potassium(K).
<h2>
Explanation:</h2>
Electronic configuration of the given elements are:
- Ca - [Ar] 4s²
- K - [Ar] 4s¹
- B - [He] 2s2 2p1
- Kr - [Ar] 3d¹⁰4s²4p⁶
- Krypton(K) have 36 electrons and it is a noble gas and hence all of its shells are completely filled with electrons and hence it will never loose electrons in normal conditions.
- Boron(B) have 5 electrons and 3 electrons in its outer shell. In order to attain a stable configuration it will loose 3 electrons and it is difficult to loose 3 electrons at a time for an atom.
- Calcium(Ca) have 20 electrons and 2 electrons in its outermost shell, in order to attain a stable configuration it will loose 2 electrons. it is quite difficult but easier than Boron.
- Potassium(K) have 21 electrons and 1 electron in its outermost orbit and in order to attain a stable configuration it will loose 1 electron. It is much easier to donate 1 electron than 2 or 3 electrons.
Result: Potassium will loose an electron most easily from the given elements.