The mass of sodium bicarbonate (NaHCO₃) used in the experiment is 1.997 g
<h3>Calculating mass </h3>
From the question we are to calculate the mass of NaHCO₃ (sodium bicarbonate) used in the experiment
From the given information
Mass of empty evaporating dish = 46.233g
Mass of evaporating dish + Sodium bicarbonate = 48.230g
∴ Mass of sodium bicarbonate (NaHCO₃) = [Mass of evaporating dish + Sodium bicarbonate] - [Mass of empty evaporating dish]
Mass of sodium bicarbonate (NaHCO₃) = 48.230g - 46.233g
Mass of sodium bicarbonate (NaHCO₃) = 1.997 g
Hence, the mass of sodium bicarbonate (NaHCO₃) used in the experiment is 1.997 g
Learn more on Calculating mass here: brainly.com/question/15268826
Answer: the answer is c.The unbalanced push causes the cart to speed up.
Explanation:
The application of an unbalanced force (the push) causes the cart to speed up. When the cart is in constant motion, the forces are balanced and there is no speeding up. Once an unbalanced force is added, the cart's speed changes.
Ca2+ would bond to any element in a 1 to 1 ratio that had an equal and opposite charge.
Neon is a noble gas, and doesn’t form bonds m
Carbon isn’t typically found in ion state, but if it did, it would likely by C4+
Flouring in ionic state is F1-, so you would need 2 flourines to cancel the 2+ charge of Calcium
Then the only option left would be Oxygen which, when in ion form is found be 2-
Answer:

Explanation:
<u>According to Arrhenius concept of acid and base:</u>
"When a base in a solution, produces/yields OH- (Hydroxide) ions."
So, when a base is dissolved in a solution, it produces OH- ions.
<u>For example:</u>
NaOH ⇄ Na⁺ + OH⁻ (So, it is a base)
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>