Hey there!:
Molar mass Lead ( Pb ) = 207.2 g/mol
Therefore:
1 mole Pb --------------------- 6.02*10²³ atoms
? moles Pb -------------------- 2.31*10²¹ atoms
moles Pb = ( 2.31*10²¹ ) * 1 / ( 6.02*10²³ ) =
moles Pb = ( 2.31*10²¹ ) / ( 6.02*10²³ ) =
=> 0.00383 moles of Pb
Hope this helps !
Answer:
The male cone
Explanation:
The male cones, which produce pollen, are usually herbaceous and much less conspicuous even at full maturity.
Answer: The concentration of C29H60 in nM per liter is 83,33 nM/liter
Explanation: Let's start from the ppb definition: ppb means parts per billion. In terms of concentracion measuring this means micrograms of solute per liter of solution.
The algebraic expression would be:
<em>ppb [=] micrograms of compound/liter of solution</em>
We can assume that the solvent is water. The solute is dissolved in water and both create the C29H60 solution.
For the exercise we have 34 ppb of C29H60, that means 34 micrograms of C29H60 in one liter of solution. So, since now, we have to convert the units from the initial data to the required answer.
The respective procedure is in a attached file.
It should be for the total solution of 93 plus 20 grams which is 113 grams so 93 divided by 113 grams comes to 82.3% sodium sulfate and this can be checked by multiplying 113 grams by 0.823 which results in 93 grams of sodium sulphate.
Answer:
Δ S = 93.8 J/mol-K
Explanation:
Given,
Boiling point of chloroform = 61.7 °C
= 273 + 61.7 = 334.7 K.
Enthalapy of vapourization = 31.4 kJ/mol.
Using Gibbs free energy equation
Δ G = Δ H - T (ΔS)
at equilibrium (when the liquid is boiling), Δ G = 0
so, 0 = ΔH - T (Δ S)
T (Δ S) = Δ H
and ΔS = ΔH / T
Δ S = (31400 J/mol.) / 334.7 K
Δ S = 93.8 J/mol-K