The latent heat of fusion refers to the solid to liquid or liquid to solid states.
Answer: Option C
<u>Explanation:
</u>
It is known that the inter conversion process from the states of solid to liquid is referred as fusion. So, for these conversions, the external energy in the heat form should be supplied to solid.
This external energy should be greater than the latent heat of solid in order to successfully break the bonds to form liquid. So the change in the enthalpy of the reaction while conversion from solids to liquids are termed as latent heats of fusion.
Even the inter-conversion from liquid to solid state will undergo change in enthalpy where the heat will be released and that is termed as latent heats of solidification. It is found that latent heat of solidification is equal in magnitude but opposite in direction with the latent heats of fusion.
Answer:
Branches of physics with real life examples
In measuring and understanding nuclear fission (a real life phenomenon), all branches of theoretical and experimental physics have to be employed. Physics branches needed in it are, radiation detection and measurement, nuclear physics, statistical physics, thermodynamics, and almost all others.
Explanation:
<h3>Answer</h3>
6.6 N pointing to the right
<h3>Explanation</h3>
Given that,
two forces acting of magnitude 3.6N
angle between them = 48°
To find,
the third force that will cause the object to be in equilibrium
<h3>1)</h3>
Find the vertical and horizontal components of the two forces
vertical force1 = sin(24)(3.6)
vertical force2= -sin(24)(3.6)
<em>(negative sign since it is acting on opposite direction)</em>
vertical force3 = sin(24)(3.6) - sin(24)(3.6)
= 0
<h3>2)</h3>
horizontal force1 = cos(24)(3.6)
horizontal force2= cos(24)(3.6)
horizontal force3 = cos(24)(3.6) + cos(24)(3.6)
= 2(cos(24)(3.6))
= 6.5775 N
≈ 6.6 N
<em />
<em />
Answer:
Explanation:
The equation for this, since we are talking about weight on an elevator, is Newton's 2nd Law adjusted to fit our needs:
where the Normal Force needed to lift that elevator car is the tension. So the equation then becomes
T = ma + w where T is the tension in the cable to lift the elevator, m is the mass of the elevator (which we have to solve for), a is the acceleration of the elevator (positive since it's going up), and w is the weight of the elevator (which we have as 5500 N). Solving first for mass:
w = mg and
5500 =- m(10) so
m = 550 kg. Now we have what we need to solve for the tension:
T = 550(4.0) + 5500 and
T = 2200 + 5500 so
T = 7700 N