Answer:
5308.34 N/C
Explanation:
Given:
Surface density of each plate (σ) = 47.0 nC/m² = 
Separation between the plates (d) = 2.20 cm
We know, from Gauss law for a thin sheet of plate that, the electric field at a point near the sheet of surface density 'σ' is given as:

Now, as the plates are oppositely charged, so the electric field in the region between the plates will be in same direction and thus their magnitudes gets added up. Therefore,

Now, plug in
for 'σ' and
for
and solve for the electric field. This gives,

Therefore, the electric field between the plates has a magnitude of 5308.34 N/C
Answer:
JC⁻¹
Explanation:
= mass of water added to calorimeter = 94.8 g
= initial temperature of the water added = 60.4 C
= specific heat of water = 4.184 Jg⁻¹C⁻¹
= mass of water available to calorimeter = 94.8 g
= initial temperature of the water in calorimeter = 22.3 C
= final equilibrium temperature = 35 C
= Heat gained by calorimeter
Using conservation of heat
Heat gained by calorimeter = Heat lost by water added - heat gained by water in calorimeter


J
= Change in temperature of calorimeter
Change in temperature of calorimeter is given as
C
Heat capacity of calorimeter is given as


JC⁻¹
The resultant force on the system is equivalent to the difference in the weights of the chandelier and Robin Hood.
F(net) = 240g - 85g
F(net) = 155g
Robin Hood's Acceleration:
F = ma
155g = 85a
a = 17.89 m/s²
Tension = mg + ma
Tension = 85(g + a)
Tension = 2400 N