Answer:
x=22.33m
Explanation:
Kinematics equation for constant deceleration:

Answer:
v = 12.12 m/s
Explanation:
It is given that,
Radius of circle, r = 30 m
The coefficient friction between tires and road is 0.5,
The centripetal force is balanced by the force of friction such that,
v = 12.12 m/s
So, the maximum speed with which this car can round this curve is 12.12 m/s. Hence, this is the required solution.
Centripetal acceleration is (speed-squared) / (radius)
CA = (6 m/s)² / (9 m)
CA = (36 m²/s²) / (9 m)
CA = (36/9) (m²/m·s²)
<em>Centripetal acceleration = 4 m/s²</em>
Let us consider two bodies having masses m and m' respectively.
Let they are separated by a distance of r from each other.
As per the Newtons law of gravitation ,the gravitational force between two bodies is given as -
where G is the gravitational force constant.
From the above we see that F ∝ mm' and 
Let the orbital radius of planet A is
= r and mass of planet is
.
Let the mass of central star is m .
Hence the gravitational force for planet A is 
For planet B the orbital radius
and mass
Hence the gravitational force 
![f_{2} =G\frac{m*3m_{1} }{[2r_{1}] ^{2} }](https://tex.z-dn.net/?f=f_%7B2%7D%20%3DG%5Cfrac%7Bm%2A3m_%7B1%7D%20%7D%7B%5B2r_%7B1%7D%5D%20%5E%7B2%7D%20%7D)

Hence the ratio is 
[ ans]
Answer: c. A person who gains unauthorized access to digital data
Explanation: