Answer: Dipole-dipole forces: electrostatic interactions of permanent dipoles in molecules; includes hydrogen bonding.
Explanation:
https://courses.lumenlearning.com/introchem/chapter/dipole-dipole-force/- More on the Topic not sure if this will help though?
Answer:
The correct option is;
It is used during photosynthesis to capture sunlight
Explanation:
During photosynthesis, light energy from the Sun is converted and stored in sugars as chemical energy. The Sun light energy is used in the formation of complex sugars such as glucose from the combination of water from the ground and carbon dioxide from the atmosphere while oxygen is released as the byproduct. Organisms are then able to obtain energy from the glucose as well as carbon fiber
The chemical equation for the reaction is as follows;
6CO₂ + 12H₂O + light energy → C₂H₁₂O₆ + 6O₂ + 6H₂O
Carbon, Water, GLucose, Oxygen, Water
dioxide
Answer:
Cu+(aq)--->Cu2+(aq) + e- : oxidation
reason: there is loss of electrons.
I2(s) + 2e--->2I-(aq) : reduction
reason: There is reduction of electrons.
Answer:
285.4 moles of gas are in a 35.0 L scuba canister if the temperature of the canister is 27.3 °C and the pressure is 200.8 atm.
Explanation:
An ideal gas is a theoretical gas that is considered to be composed of randomly moving point particles that do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
In this case:
- P= 200.8 atm
- V= 35 L
- n=?
- R= 0.082

- T= 27.3 C= 300.3 K (being O C= 273 K)
Replacing:
200.8 atm* 35 L= n* 0.082
* 300.3 K
Solving:

n= 285.4 moles
<u><em>285.4 moles of gas are in a 35.0 L scuba canister if the temperature of the canister is 27.3 °C and the pressure is 200.8 atm.</em></u>
<u><em></em></u>
Answer: False
Explanation: the answer is false