Ke = (1/2)mv²
m = 100kg, v = 10 km/s = 10*1000 = 10000m/s
Ke = (1/2)*100*10000
Ke = 500000 Joules
Voltmeter is used to find the potential difference between two points.
We always connect it in parallel to the points where we need the potential difference.
Here in order to make the reading accurate we can increase the resistance of voltmeter so that it can not withdraw any current from the circuit.
Answer:
solar, wind, hydro, natural resources
The speed at which sound travels through the gas in the tube is 719.94m/s
<u>Explanation:</u>
Given:
Frequency, f = 11999Hz
Wavelength, λ = 0.03m
Velocity, v = ?
Sound speed in the tube is calculated by multiplying the frequency v by the wavelength λ.
As the sound loudness changed from a maximum to a minimum, then we know the sound interference in the case changed from constructive interference (the two sound waves are in phase, i.e. peaks are in a line with peaks and so the troughs), to a destructive interference (peaks coinciding with troughs). The least distance change required to cause such a change is a half wavelength distance, so:
λ/2 = 0.03/2
λ = 0.06m
We know,
v = λf
v = 0.06 X 11999Hz
v = 719.94m/s
Therefore, the speed at which sound travels through the gas in the tube is 719.94m/s