The angular frequency of the wave is determined as 75.4 rad/s.
<h3>
What is wave function?</h3>
A wave function is a mathematical equation for the motion of the wave.
y(x, t) = A sin(kx + ωt + Φ)
where;
- ω is angular speed
- k is angular wavenumber
- Φ is phase angle
<h3>What is angular frequency?</h3>
The angular frequency is the angular displacement of any wave element per unit of time or the rate of change of the waveform phase.
<h3>Angular frequency</h3>
ω = 2πf
ω = 2π(12)
ω = 75.4 rad/s
Thus, the angular frequency of the wave is determined as 75.4 rad/s.
Learn more about angular frequency here: brainly.com/question/3654452
#SPJ4
Answer: 7.41 m/s
Explanation: By using the law of of energy, kinetic energy of the brick as it falls equals the potential energy before falling.
Kinetic energy = mv²/2, potential energy = mgh
mv²/2 = mgh
v²/2 = gh
v² = 2gh
v = √2gh
Where g = 9.8 m/s², h = 2.80m
v = √2×9.8×2.8 = 7.41 m/s
Ohm's Law tells the relationship between voltage, current, and resistance.
It can be written in three different ways, depending on which ones you know,
and which one you want to find.
Here's the one we need:
Resistance = (voltage) divided by (current)
= (120 V) / (0.5 Amp)
= 240 ohms .
The similarities and the differences between gravitational and electric force are listed below
Explanation:
- The magnitude of the gravitational force between two objects is given by Newton's law of gravitation:
where
is the gravitational constant
are the masses of the two objects
r is the separation between them
- Coloumb's law gives instead the strength of the electrostatic force between two charged objects, which is
where:
is the Coulomb's constant
are the two charges
r is the separation between the two charges
By comparing the two equations, we find the following similarities:
- Both the forces are inversely proportional to the square of the distance between the two objects,

- Both the forces are proportional to the product between the "main quantity" of each force, which is the mass for the gravitational force (
) and the charge for the electric force (
Instead, we have the following differences:
- The gravitational force is always attractive, since the sign of
is always positive, while the electric force can be either attractive or repulsive, since the sign of
can be either positive or negative - The value of the gravitational costant G is much smaller than the value of the Coulomb's constant, so the gravitational force is much weaker than the electric force
Learn more about gravitational force and electric force:
brainly.com/question/1724648
brainly.com/question/12785992
brainly.com/question/8960054
brainly.com/question/4273177
#LearnwithBrainly
Answer:

Explanation:
The original equation is:

We notice that:
- we have 1 atom of Fe on the left, and 2 atoms of Fe on the right
- we have 2 atoms of O on the left, and 3 atoms of O on the right
Therefore, the equation is not balanced.
In order to balance it, we can add:
- a coefficient 3 in front of 
- a coefficient 2 in front of 
So we have:

Now the oxygen is balanced, but the iron it not balanced yet, since we have 1 Fe on the left and 4 on the right. Therefore, we should add a coefficient 4 on the Fe on the left:
