1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yanalaym [24]
3 years ago
10

If an object is thrown upward at 128 feet per second from a height of 76 feet, its height S after t seconds is given by the foll

owing equation. S(t) = 76 + 128t − 16t2 (a) What is the average velocity (in ft/sec) in the first 4 seconds after it is thrown? ft/sec (b) What is the average velocity (in ft/sec) in the next 4 seconds?
Physics
1 answer:
faltersainse [42]3 years ago
3 0
<h2>a) Average velocity in first 4 seconds is 64 ft/s upward</h2><h2>b) Average velocity in second 4 seconds is 63.5 ft/s downward</h2>

Explanation:

a) Given S(t) = 76 + 128t − 16t²

    s(0) = 76 + 128 x 0 − 16 x 0² = 76 ft

    s(4) = 76 + 128 x 4 − 16 x 4² = 332 ft

    Displacement in 4 seconds = 332 - 76 = 256 ft

    Time = 4 - 0 = 4 s

    \texttt{Velocity = }\frac{256}{4}=64ft/s

    Average velocity in first 4 seconds is 64 ft/s upward

a) Given S(t) = 76 + 128t − 16t²

    s(4) = 76 + 128 x 4 − 16 x 4² = 332 ft

    s(8) = 76 + 128 x 8 − 16 x 8² = 78 ft

    Displacement in 4 seconds = 78 - 332 = -254 ft

    Time = 4 - 0 = 4 s

    \texttt{Velocity = }\frac{-254}{4}=-63.5ft/s

    Average velocity in second 4 seconds is 63.5 ft/s downward

You might be interested in
Sam stands on a 20 m high cliff and throws a 45 g rock with an initial velocity of 5 m/s [forward] to the water below. Use the c
storchak [24]

Answer:

v = 12.52 [m/s]

Explanation:

To solve this problem we must use the energy conservation theorem. Which tells us that potential energy is transformed into kinetic energy or vice versa. This is more clearly as the potential energy decreases the kinetic energy increases.

Ep = Ek

where:

Ep = potential energy [J] (units of joules]

Ek = kinetic energy [J]

Ep = m*g*h

where:

m = mass of the rock = 45 [g] = 0.045 [kg]

g = gravity acceleration = 9.81 [m/s²]

h = elevation = (20 - 12) = 8 [m]

Ek = 0.5*m*v²

where:

v = velocity [m/s]

The reference level of potential energy is taken as the ground level, at this level the potential energy is zero, i.e. all potential energy has been transformed into kinetic energy. In such a way that when the Rock has fallen 12 [m] it is located 8 [m] from the ground level.

m*g*h = 0.5*m*v²

v² = (g*h)/0.5

v = √(9.81*8)/0.5

v = 12.52 [m/s]

5 0
3 years ago
Where can classic examples of shield volcanoes be found?
Darina [25.2K]
The largest is Mauna Loa on the Big Island of Hawaii; all the volcanoes in the Hawaiian Islands are shield volcanoes. There are also shield volcanoes, for example, in Washington, Oregon, and the Galapagos Islands
4 0
3 years ago
A motorcycle is following a car that is traveling at a constant speed on a straight highway. Initially, the car and the motorcyc
Artist 52 [7]

Answer:

(a) 3.807 s

(b) 145.581 m

Explanation:

Let Δt = t2 - t1 be the time it takes from the moment when the motorcycle starts to accelerate until it catches up with the car. We know that before the acceleration, both vehicles are travelling at a constant speed. So they would maintain a distance of 58 m prior to the acceleration.

The distance traveled by car after Δt (seconds) at v_c = 23m/s speed is

s_c = \Delta t v_c = 23\Delta t

The distance traveled by the motorcycle after Δt (seconds) at m_m = 23 m/s speed and acceleration of a = 8 m/s2 is

s_m = \Delta t v_m + a\Delta t^2/2

s_m = 23\Delta t + 8\Delta t^2/2 = 23 \Delta t + 4 \Delta t^2

We know that the motorcycle catches up to the car after Δt, so it must have covered the distance that the car travels, plus their initial distance:

s_m = s_c + 58

23 \Delta t + 4 \Delta t^2 = 23\Delta t + 58

4 \Delta t^2 = 58

\Delta t^2 = 14.5

\Delta t = \sqrt{14.5} = 3.807s

(b)

s_m = 23 \Delta t + 4 \Delta t^2

s_m = 23*3.807 + 58 = 145.581 m

5 0
2 years ago
©
Andru [333]

Answer:

Two positively charged particles

Explanation:

I said two positively charged particles because if I say c or d what ever it is for you guy it can be wrong so just pick the one that says Two positively charged particles

8 0
2 years ago
A. If a T-Rex runs 20 meters in 4 seconds, what is it’s average speed?
mariarad [96]

5m/s

100m

Explanation:

Average speed is sum of distance distance traveled in a given time by a body.

 Average speed= \frac{total distance covered}{time taken}

Distance = 20m

time = 4s

  Average speed = \frac{20}{4} = 5m/s

For the spaceship;

   Distance covered = speed x time

Speed = 50m/s

time = 2s

 Distance covered = 50 x 2 = 100m

learn more:

Average speed brainly.com/question/5063905

#learnwithBrainly

3 0
2 years ago
Other questions:
  • Inertia ____.
    6·1 answer
  • Calculate the period (T) of uniform circular motion if the velocity is 40.0 m/s and centripetal acceleration is 20.0 m/s2.
    10·1 answer
  • An imaginary cubical surface of side L has its edges parallel to the x-, y- and z-axes, one corner at the point x = 0, y = 0, z
    9·1 answer
  • If I move 15ft foward, 15 ft backwards, 15 ft to the right, 15ft to the left where am I?
    7·2 answers
  • The tibia is a lower leg bone (shin bone) in a human. The maximum strain that the tibia can experience before fracturing corresp
    13·1 answer
  • A cylinder with a movable piston contains a sample of ideal gas. A temperature probe and a pressure probe are inserted into the
    14·1 answer
  • Atoms with atomic number ____ or less will not undergo fission.
    9·1 answer
  • 1. Weather factors include
    13·1 answer
  • A 0.5 kg object is whirled on the end of a string that is 1.2 m long at a speed of 7.5 m/s. Calculate the angular momentum of th
    10·1 answer
  • 22. Cindy created a solenoid by coiling a copper wire and attaching it to a battery.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!