Answer:
<h2>3 m/s^2</h2>
Explanation:
Step one:
given
Mass m= 4kg
Force F= 12N
Required
Acceleration the relation between force, acceleration, and mass is Newton's first equation of motion, which says a body will continue to be at rest or uniform motion unless acted upon by an external force
F=ma
a=F/m
a=12/4
a=3 m/s^2
41.5 is the answer that i got. hope this helps!
Answer:
it appears to be farther away than it actually is, and therefore smaller then the object itself.
Answer:

So a=3.844 and b=5
Explanation:
Scientific notation requests to write a number using powers of ten as a factor accompanying a real number (a) between 1 and smaller than 10 that contains the digits to exactly represent the original number. So in this case, the number 384,400 can be written as:

with a=3.844, and "5" as the exponent of ten (so b=5)
Answer:
31,360J
Explanation:
Gravitation potential energy (gpe) is calculated from the formula mgh.
That implies, gpe = mgh
Therefore substituting the values of m and h as given in the question, knowing in mine that the acceleration due to gravity( g) is 9.8 N/kg, will give 31,360J
Never forget to put your SI units, because even if your answer is numerical correct, it will be incorrect because it represents no physical quantity.