Answer:

Explanation:
Let's use the equation that relate the temperatures and volumes of an adiabatic process in a ideal gas.
.
Now, let's use the ideal gas equation to the initial and the final state:

Let's recall that the term nR is a constant. That is why we can match these equations.
We can find a relation between the volumes of the initial and the final state.

Combining this equation with the first equation we have:


Now, we just need to solve this equation for T₂.

Let's assume the initial temperature and pressure as 25 °C = 298 K and 1 atm = 1.01 * 10⁵ Pa, in a normal conditions.
Here,
Finally, T2 will be:

Answer:nah u took my points I take urs
Explanation:
Answer:
0.5mv^2=50, v=5, 25/2×m=50, m=50×2/25, So, the answer is 4
If the gymnast mass were doubled, her height (h) from the top of the board would be as follows,
с Stay the same
Explanation:
- The Mass of an object or body does not affect the acceleration due to gravity in any kind of way.
- Light weight objects accelerate more slowly than the heavy objects because when the forces other than the gravity also plays a major role.
- Mass increases of a body when an object has higher velocity or the speed.
- The greater the force of gravity, it would give a direct impact on the object's acceleration; thus considering only a force, the heavier the object is, it would accelerate faster. But an acceleration depends upon the two factors which are force and mass.
- Newton's second law of motion states that the acceleration of an object is dependent upon the two factors which are, the net force of an object and the mass of the object.
Answer:

Explanation:
given,
F = 14.1 i + 0 j + 5.1 k
displacement = 6 m
Assuming block is moving in x- direction
we know,
dW = F dx


![W = F[x]_0^6](https://tex.z-dn.net/?f=W%20%3D%20F%5Bx%5D_0%5E6)


hence, work done by the force is equal to 