1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
2 years ago
14

A diver swims 5. 875 feet up to the surface of the water. Which number represents the diver’s position in relation to the surfac

e before swimming to the top?.
Chemistry
1 answer:
Tanzania [10]2 years ago
7 0

Answer

Negative 5 and StartFraction 7 over 8 EndFractionfeet

You might be interested in
How many liters of CO2 are in 4.76 moles? (at STP)
dem82 [27]

<u>Answer:</u> The volume of carbon dioxide gas at STP for given amount is 106.624 L

<u>Explanation:</u>

We are given:

Moles of carbon dioxide = 4.76 moles

<u>At STP:</u>

1 mole of a gas occupies a volume of 22.4 Liters

So, for 4.76 moles of carbon dioxide gas will occupy a volume of = \frac{22.4L}{1mol\times 4.76mol=106.624L

Hence, the volume of carbon dioxide gas at STP for given amount is 106.624 L

6 0
3 years ago
A mixture of 75 mole% methane and 25 mole% hydrogen is burned with 25% excess air. Fractional conversions of 90% of the methane
son4ous [18]

Solution :

Consider a mixture of methane and hydrogen.

Take the basis as 100 moles of the mixture.

The mixture contains 75% of methane and 25% of hydrogen by mole and it is burned with 25% in excess air.

Moles of methane = 0.75 x 100

Moles of hydrogen = 0.25 x 100

The chemical reactions involved during the reaction are :

$CH_4+2O_2 \rightarrow CO_2 + 2H_2O$

$CH_4+1.5O_2 \rightarrow CO+2H_2O$

$H_2+0.5O_2 \rightarrow H_2O$

The fractional conversion of methane is 90%

Number of moles of methane burned during the reaction is = 0.9 x 75

                                                                                                   = 67.5

Moles of methane leaving = initial moles of methane - moles of methane burned

                                           = 75 - 67.5

                                           = 7.5 moles

Fractional conversion of hydrogen is 85%

The number of moles of hydrogen burned during the reaction is = 0.85 x 25

                                                                                                   = 21.25

Moles of hydrogen leaving = initial moles of hydrogen - moles of hydrogen burned

                                           = 25 - 21.25

                                           = 3.75 moles

Methane undergoing complete combustion is 95%.

$CO_2$ formed is = 0.95 x 67.5

                       = 64.125 moles

$CO$ formed is = 0.05 x 67.5

                       = 3.375 moles

Oxygen required for the reaction is as follows :

From reaction 1, 1 mole of the methane requires 2 moles of oxygen for the complete combustion.

Hence, oxygen required is = 2 x 75

                                            = 150 moles

From reaction 3, 1 mole of the hydrogen requires 0.5 moles of oxygen for the complete combustion.

Hence, oxygen required is = 0.5 x 25

                                            = 12.5 moles

Therefore, total oxygen is = 150 + 12.5 = 162.5 moles

Air is 25% excess.

SO, total oxygen supply = 162.5 x 1.25 = 203.125 moles

Amount of nitrogen = $203.125 \times \frac{0.79}{0.21} $

                                = 764.136 moles

Total oxygen consumed = oxygen consumed in reaction 1 + oxygen consumed in reaction 2 + oxygen consumed in reaction 3

Oxygen consumed in reaction 1 :

1 mole of methane requires 2 moles of oxygen for complete combustion

 = 2 x 64.125

 = 128.25 moles

1 mole of methane requires 1.5 moles of oxygen for partial combustion

= 1.5 x 3.375

= 5.0625 moles

From reaction 3, 1 mole of hydrogen requires 0.5 moles of oxygen

= 0.5 x 21.25

= 10.625 moles.

Total oxygen consumed = 128.25 + 5.0625 + 10.625

                                        = 143.9375 moles

Total amount of steam = amount of steam in reaction 1 + amount of steam in reaction 2 + amount of steam in reaction 3

Amount of steam in reaction 1 = 2 x 64.125 = 128.25 moles

Amount of steam in reaction 2 = 2 x 3.375 = 6.75 moles

Amount of steam in reaction 3  = 21.25 moles

Total amount of steam = 128.25 + 6.75 + 21.25

                                     = 156.25 moles

The composition of stack gases are as follows :

Number of moles of carbon dioxide = 64.125 moles

Number of moles of carbon dioxide = 3.375 moles

Number of moles of methane = 7.5 moles

Number of moles of steam = 156.25 moles

Number of moles of nitrogen = 764.136 moles

Number of moles of unused oxygen = 59.1875 moles

Number of moles of unused hydrogen = 3.75 moles

Total number of moles of stack  gas

= 64.125+3.375+7.5+156.25+764.136+59.1875+3.75

= 1058.32 moles

Concentration of carbon monoxide in the stack gases is

$=\frac{3.375}{1058.32} \times 10^6$

= 3189 ppm

b).  The amount of carbon monoxide in the stack gas can be decreased by increasing the amount of the excess air. As the amount of the excess air increases, the amount of the unused oxygen and nitrogen in the stack gases will increase and the concentration of CO will decrease in the stack gas.  

6 0
3 years ago
In a neutral atom, the number of protons is always equal to what other part of the atom?
Licemer1 [7]

Answer:

b. The number of electrons

Explanation:

A "neutral atom" has a <u>neutral charge</u>. This means that <em>its charge is equal to </em><em>zero. </em>In order for the charges to cancel out each other, the atom's <em>positive charge should be equal to the negative charge. </em>These being said, the number of electrons<em> (negatively-charged)</em> is then equal to the number of protons <em>(positively-charged). </em>Those atoms which are not neutral are called <em>"ions."</em> This means that they either have more or less electrons than the protons.

7 0
2 years ago
Complete combustion of 7.40 g of a hydrocarbon produced 22.4 g of CO2 and 11.5 g of H2O. What is the empirical formula for the h
cluponka [151]
<span>C2H5 First, you need to figure out the relative ratios of moles of carbon and hydrogen. You do this by first looking up the atomic weight of carbon, hydrogen, and oxygen. Then you use those atomic weights to calculate the molar masses of H2O and CO2. Carbon = 12.0107 Hydrogen = 1.00794 Oxygen = 15.999 Molar mass of H2O = 2 * 1.00794 + 15.999 = 18.01488 Molar mass of CO2 = 12.0107 + 2 * 15.999 = 44.0087 Now using the calculated molar masses, determine how many moles of each product was generated. You do this by dividing the given mass by the molar mass. moles H2O = 11.5 g / 18.01488 g/mole = 0.638361 moles moles CO2 = 22.4 g / 44.0087 g/mole = 0.50899 moles The number of moles of carbon is the same as the number of moles of CO2 since there's just 1 carbon atom per CO2 molecule. Since there's 2 hydrogen atoms per molecule of H2O, you need to multiply the number of moles of H2O by 2 to get the number of moles of hydrogen. moles C = 0.50899 moles H = 0.638361 * 2 = 1.276722 We can double check our math by multiplying the calculated number of moles of carbon and hydrogen by their respective atomic weights and see if we get the original mass of the hydrocarbon. total mass = 0.50899 * 12.0107 + 1.276722 * 1.00794 = 7.400185 7.400185 is more than close enough to 7.40 given rounding errors, so the double check worked. Now to find the empirical formula we need to find a ratio of small integers that comes close to the ratio of moles of carbon and hydrogen. 0.50899 / 1.276722 = 0.398669 0.398669 is extremely close to 4/10, so let's reduce that ratio by dividing both top and bottom by 2 giving 2/5. Since the number of moles of carbon was on top, that ratio implies that the empirical formula for this unknown hydrocarbon is C2H5</span>
3 0
3 years ago
Calculate the lattice energy for NaF (s) given the following
san4es73 [151]

Answer: E

Explanation:

The lattice energy is the energy change when one mole of a crystal is formed from its components ions in its gaseous sate

Therefore lattice energy = heat of Sublimation+ ionization energy +electron affinity-(heat of formation)

Therefore lattice Energy =     109 +495 -328 +570.

Lattice energy = --923kjmol-1

3 0
3 years ago
Other questions:
  • this element is the only element that is shiny, mallable, and a good conductor of heat and electricity. it has a higher number a
    11·1 answer
  • From the periodic table, the number of valence electrons for most of the main group elements may be determined directly from the
    6·1 answer
  • How many elements of unsaturation are implied by the molecular formula c6h12?
    12·2 answers
  • Non-polar covalent compounds can dissolve _______. A. polar covalent compounds B. ionic compounds C. non-polar covalent compound
    11·1 answer
  • Where is carbon found on earth? <br><br> ( short answer please )
    5·2 answers
  • Please help with this
    15·1 answer
  • How much energy is needed to heat 45 g of water from 15C to 75C?
    11·1 answer
  • 12.Combustion reactions take place between a fuel and oxygen and produce carbon dioxide and water. Balance the following combust
    12·1 answer
  • 6. What is the molarity of 175 mL of solution containing 2.18 grams of NazS04-10H2O?​
    10·1 answer
  • Nivel de energia maximo de 20Ca
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!