Complete Question:
A 10 kg block is pulled across a horizontal surface by a rope that is oriented at 60° relative to the horizontal surface.
The tension in the rope is constant and equal to 40 N as the block is pulled. What is the instantaneous power (in W) supplied by the tension in the rope if the block when the block is 5 m away from its starting point? The coefficient of kinetic friction between the block and the floor is 0.2 and you may assume that the block starting at rest.
Answer:
Power = 54.07 W
Explanation:
Mass of the block = 10 kg
Angle made with the horizontal, θ = 60°
Distance covered, d = 5 m
Tension in the rope, T = 40 N
Coefficient of kinetic friction, 
Let the Normal reaction = N
The weight of the block acting downwards = mg
The vertical resolution of the 40 N force, 





Power, 

For this problem, we use the Coulomb's law written in equation as:
F = kQ₁Q₂/d²
where
F is the electrical force
k is a constant equal to 9×10⁹
Q₁ and Q₂ are the charge of the two objects
d is the distance between the two objects
Substituting the values:
F = (9×10⁹)(-22×10⁻⁹ C)(-22×10⁻⁹ C)/(0.10 m)²
F = 0.0004356 N
Answer:
v = 7934.2 m/s
Explanation:
Here the total energy of the Asteroid and the Earth system will remains conserved
So we will have

now we know that





now from above formula

now we have

now plug in all data


6 . . . . . a crest
7 . . . . . the amplitude
8 . . . . . the wavelength
9 . . . . . a trough