Answer : The kinetic energy depends directly on the mass of a particle.
Explanation :
We know that the kinetic energy of any particle is given by :

Where,
m is the mass of an object.
v is the velocity with which it is moving
Kinetic energy is due to the motion of the particle.
So, the kinetic energy of a particle is directly proportional to its mass.
Hence, the conclusion of the question is if the mass of a particle is increases then its kinetic energy also increase.
<span>the gravational potential energy of anything on the ground is zero. When calculating potential energy you take height in meters and multiply it by the mass of the object in kilograms and the acceleration of gravity to get a new unit called Joules.
Any object at ground level has a potential energy of zero newtons becuase anything multiplied by zero is zero. An object with mass of 54 kg, 4 meters above the ground has a gravitatinal potential energy of 2116.8 Joules.</span>
Answer:
λ = 470.66 nm
Explanation:
for bright fringe
D= distance between slit and screen
d= distance between the slits
for first order bright fringe m = 1,


for dark fringe,we have
Now to get the dark fringes at the same location we should have;
(706)D/d = (m + 1/2)λD/d
put m = 1
(1 + 1/2)λ = (706)
λ = 470.66 nm
Answer:
T = 120.3 N
Explanation:
Since, the tension in the rope is acting against both the centripetal force and the weight of the stone. As both act downward towards center of the circle and tension acts towards point of support that is upward. So, tension will be equal to the sum of centripetal force and weight of the stone:
Tension = Centripetal Force + Weight of Stone
T = mv²/r + mg
where,
m = mass of stone = 5.31 kg
r = radius of circle = length of string = 2.99 m
g = 9.8 m/s²
Therefore,
T = (5.31 kg)(6.2 m/s)²/(2.99 m) + (5.31 kg)(9.8 m/s²)
T = 68.27 N + 52.03 N
<u>T = 120.3 N</u>