<span>Germanium
To determine which melts first, convert their melting temperatures so they're both expressed on same scale. It doesn't matter what scale you use, Kelvin, Celsius, of Fahrenheit. Just as long as it's the same scale for everything. Since we already have one substance expressed in Kelvin and since it's easy to convert from Celsius to Kelvin, I'll use Kelvin. So convert the melting point from Celsius to Kelvin for Gold by adding 273.15
1064 + 273.15 = 1337.15 K
So Germanium melts at 1210K and Gold melts at 1337.15K. Germanium has the lower melting point, so it melts first.</span>
Answer:
Minimum number of photons required is 1.35 x 10⁵
Explanation:
Given:
Wavelength of the light, λ = 850 nm = 850 x 10⁻⁹ m
Energy of one photon is given by the relation :
....(1)
Here h is Planck's constant and c is speed of light.
Let N be the minimum number of photons needed for triggering receptor.
Minimum energy required for triggering receptor, E₁ = 3.15 x 10⁻¹⁴ J
According to the problem, energy of N number of photons is equal to the energy required for triggering, that is,
E₁ = N x E
Put equation (1) in the above equation.

Substitute 3.15 x 10⁻¹⁴ J for E₁, 850 x 10⁻⁹ m for λ, 6.6 x 10⁻³⁴ J s for h and 3 x 10⁸ m/s for c in the above equation.

N = 1.35 x 10⁵
Answer:
16.8 lb is the force on the brake pad of one wheel.
Explanation:
Force applied on the piston = 
Area of the piston = 
Force applied on the brakes = 
Area of the brakes = 
Applying Pascal's law: 'For an incompressible fluid pressure at one surface is equal to the pressure at other surface'.


16.8 lb is the force on the brake pad of one wheel.
1. Humidity cannot be used to predict rain.
2. I'm pretty sure it's weather but I'm not 100% sure. Maybe like 89% sure.
3. Tempurature doesn't affect humidity.
4. Not sure but I think its the 3rd one