The amount of heat energy required to raise the temperature of a unit mass of a material to one degree is called D. its heat capacity.
The relationship of the heat when applied to the object and the change in temperature of the object when heat is being applied is directly proportional to each other. This means that when heat is applied to the object, the temperature of the object increases and when heat is not applied to the object, the temperature of the object decreases.
Answer:
The direction of defliection of the site to the left I think ..
Answer:

Explanation:
The Free Body Diagram of the system is presented in the image attached below. The final speed is determined by means of the Principle of Energy Conservation and the Work-Energy Theorem:







Answer:
original mass of the block of ice is 38.34 gram
Explanation:
Given data
cup mass = 150 g
ice temperature = 0°C
water mass = 210 g
water temperature = 12°C
ice melt = 2 gram
to find out
solution
we know here
specific heat of aluminum is c = 0.900 joule/gram °C
Specific heat of water C = 4.186 joule/gram °C
so here temperature difference is dt = 12- 0 = 12°C
so here heat lost by water and cup are given by
heat lost = cup mass × c × dt + water mass × C × dt
heat lost = 150 × 0.900 × 12 + 210 × 4.186 × 12
heat lost = 12168.72 J
so
mass of ice melt here = heat lost / latent heat of fusion
here we know latent heat of fusion = 334.88 joule/gram
so
mass of ice melt = 12168.72 / 334.88
mass of ice melt is 36.337554 gram
so mass of ice is here = mass of ice melt + ice melt
mass of ice = 36.337554 + 2
mass of ice = 38.337554 gram
so original mass of the block of ice is 38.34 gram
Answer:
i think you need to show a picture
Explanation: