Answer:
3.4 × 10^23 molecules
Explanation:
To find the number of molecules present in C6H14, we multiply the number of moles in the compound by Avagadro's number (6.02 × 10^23 atoms).
number of molecules = number of moles (mol) × 6.02 × 10^23?
Number of molecules = 0.565 × 6.02 × 10^23
3.4 × 10^23 molecules
Answer:
Black holes are astronomical objects that have such strong gravity, not even light can escape. Neutron stars are dead stars that are incredibly dense. ... Both objects are cosmological monsters, but black holes are considerably more massive than neutron stars.
Explanation:
464 g radioisotope was present when the sample was put in storage
<h3>Further explanation</h3>
Given
Sample waste of Co-60 = 14.5 g
26.5 years in storage
Required
Initial sample
Solution
General formulas used in decay:

t = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
Half-life of Co-60 = 5.3 years
Input the value :
