All elements are made up of atoms. ➢ Atoms are made up of protons, neutrons, and electrons. Two different kinds of atoms can combine to form a compound. A molecule is a combination of atoms that cannot be broken apart while still retaining the same properties as the larger substance that it is a part of.
Answer:
M = 20.5 g/mol
Explanation:
Given data:
Volume of gas = 1.20 L
Mass of gas = 1.10 g
Temperature and pressure = standard
Solution:
First of all we will calculate the density.
Formula:
d = mass/ volume
d = 1.10 g/ 1.20 L
d = 0.92 g/L
Now we will calculate the molar mass.
d = PM/RT
0.92 g/L = 1 atm × M / 0.0821 atm.L/mol.K ×273.15 K
M = 0.92 g/L × 0.0821 atm.L/mol.K ×273.15 K / 1 atm
M = 20.5 g/mol
Answer:
Gay-Lussac's Law
Explanation:
The pressure is directly proportional to the absolute temperature under constant volume. This states the Gay-Lussac's law. The equation is:
P1T2 = P2T1
<em>Where P is pressure and T absolute temperature of 1, initial state and 2, final state of the gas.</em>
<em />
That means the right option is:
- Gay-Lussac's Law
Answer: An increase in the ratio of insulin to glucagon will increase the activity of --
- Acetyl-CoA carboxylase(+)
-Phosphofructokinase PFK2(+)
-Glycogen synthase(+)
- Hormone sensitive lipase (-). The hormone sensitive lipase activity is not increased with increased insulin activity.
Explanation: increased insulin - glucagon ratio is usually high in fed state.Insulin helps the cells absorb glucose, reducing blood sugar and providing the cells with glucose for energy. When blood sugar levels are too low, the pancreas releases glucagon. Glucagon instructs the liver to release stored glucose, which causes blood sugar to rise.
Answer: Atom/element
Explanation: Since matter cannot be created or destroyed, the number of atoms has to be equal on both sides of the equation.