The answer would be Exosphere because, there are 3 main regions that circulate oxygen through the Earths system, which are the Biosphere, Atmosphere, and the Lithosphere.
The image of the object is 8cm to the left of the lens (D)
<h3>
</h3>
What is the image of an object?
The image of an object is said to be the location where light rays from that object intersect with a mirror by reflection.
It is calculated thus:
1÷v = 1÷f - 1÷u
<h3>How to calculate the image of an object</h3>
From the formula
1÷v = 1÷f - 1÷u
<h3>
Where </h3>
V = image distance fromthe object
U = object
f = focal length
Substitute the values
1÷v = 1÷8 - 1÷ 4
1÷v = - 1÷8
Make v the subject of formula
v = -8cm
Therefore, the image of the object is 8cm to the left of the lens (D)
Learn more on focal length here:
brainly.com/question/25779311
#SPJ1
Answer:
<em>v = 381 m/s</em>
Explanation:
<u>Linear Speed</u>
The linear speed of the bullet is calculated by the formula:

Where:
x = Distance traveled
t = Time needed to travel x
We are given the distance the bullet travels x=61 cm = 0.61 m. We need to determine the time the bullet took to make the holes between the two disks.
The formula for the angular speed of a rotating object is:

Where θ is the angular displacement and t is the time. Solving for t:

The angular displacement is θ=14°. Converting to radians:

The angular speed is w=1436 rev/min. Converting to rad/s:

Thus the time is:

t = 0.0016 s
Thus the speed of the bullet is:

v = 381 m/s
Ya because they’re are both 50 liters
molecular cloud <interstellar cloud <1 Msun protostar <1 Msun star <intercloud gas
Explanation:
<u>Molecular cloud-</u> They are a variety of interstellar cloud in which molecular hydrogen can sustain themselves. They have a very low temperature ranging from -440 to -370 degrees Fahrenheit or between<u> 10 to 50 Kelvin. </u>Owing to their extremely low temperature, they appear mostly dark when viewed through telescopes.
<u>Interstellar cloud-</u> They are a congregation of a large number of interstellar gases, dust and plasma in any galaxy or universe. They have varying temperature depending on their proximity to a star. E.g. Neutral hydrogen atom clouds have a temperature of around <u>just 100 Kelvin</u> while those in the near vicinity of a star have temperatures as high as 10,000 Kelvin.
<u>1 Msun star-</u> These stars have temperature anywhere between <u>5300 and 6000 Kelvin</u>. The main source of such high surface temperature is nuclear fusion process where elemental hydrogen molecules are fused to form helium molecules.
<u>1 Msun protostar-</u> protostar is rather a young star which is still in formation phase (i.e. gathering mass from the parent molecular cloud). They have temperature anywhere between <u>2000-3000</u> kelvin and are accompanied by dust usually.
<u>Intercloud gas- </u>These are the remainder gases that are spread throughout the interstellar space. This Intercloud gas is divided into warm intercloud medium and extremely hot coronal gas with temperatures comparing to Sun’s corona. Warm intercloud forms the dominant part of intercloud gas with a temperature around <u>8000 Kelvin</u>.