Remark
When you are asked a question like this, the first thing to do is search out a formula and put some limits on it.
Formula
I = E/R which comes from E = IR. To get to the derived formula, divide both sides by R
E/R = I*R/R
E/R = I
Discussion
This is an inverse relationship. That means that as one goes up the other one will go down.
So in this case you keep E constant and you manipulate R and look at your results for I
Case 1
Let us say that E = 10 volts
Let us also say the R = 10 ohms
I = E/R
I = 10/10
I = 1 ohm
Case Two
Let's raise the Resistance to 100 ohms
E = 10
R = 100
I = 10/100 = 0.1
Conclusion
As the Resistance goes up, the current goes down. Answer: A
I would have to see the graph.. but by looking at one one online, they are between points D and E.
Answer:
(a) 
(b) 
(c) 
Explanation:
First change the units of the velocity, using these equivalents
and 

The angular acceleration
the time rate of change of the angular speed
according to:


Where
is the original velocity, in the case the velocity before starting the deceleration, and
is the final velocity, equal to zero because it has stopped.

b) To find the distance traveled in radians use the formula:


To change this result to inches, solve the angular displacement
for the distance traveled
(
is the radius).


c) The displacement is the difference between the original position and the final. But in every complete rotation of the rim, the point returns to its original position. so is needed to know how many rotations did the point in the 890.16 rad of distant traveled:

The real difference is in the 0.6667 (or 2/3) of the rotation. To find the distance between these positions imagine a triangle formed with the center of the blade (point C), the initial position (point A) and the final position (point B). The angle
is between the two sides known. Using the theorem of the cosine we can find the missing side of the the triangle(which is also the net displacement):


One Celsius degree is the same size as one Kelvin. Each of them is the size of 1.8 Fahrenheit degrees.
Gravity is the force that attracts all matter to each other.
Explanation:
Sir Isaac Newton discovered Gravity when he saw a falling apple while thinking about the forces of nature.
Gravity is a fundamental force that causes objects to have weight. Gravity acts on all matter and is a function of both mass and distance. Each object attracts every other object with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between them. The force of attraction is, however, negligible between most objects because of their small size.
Gravitational force is given as:

Where G is gravitational constant and is equal to 6.674×10−11 m³⋅kg⁻¹⋅s⁻²
m₁ and m₂ are the masses of the two objects.
r is the distance between the two objects.
The gravity is what makes an apple fall on the ground and gravity is the force that keeps us on the ground.
Keywords: gravity, Newton, Force, weight
Learn more about gravitational force from brainly.com/question/14321566
#learnwithBrainly