1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrezito [222]
3 years ago
11

How do open-market operations change the money supply?

Physics
1 answer:
Greeley [361]3 years ago
6 0
If they want to increase the money supply<span> in the economy it </span>will<span> buy securities. Conversely, if the they want to </span>decrease the money supply<span>, it </span>will<span> sell securities.</span>
You might be interested in
The Earth, the Sun, and the rest of the solar system are almost unimaginably old when viewed on a human time scale. While modern
Zielflug [23.3K]
<span>While modern humans first evolved approximately 200,000 years ago,
the age of the Earth, the Sun, and the rest of the solar system is believed
to be approximately 4.6 billion years.

That makes the Earth, the Sun, and the rest of the solar system
something like  23 thousand times  as old as the human species !
</span>
8 0
3 years ago
Read 2 more answers
If a lever has an input arm of 80 cm and an output arm of 20 cm, what is its ideal mechanical advantage?
Alexeev081 [22]

Answer:

16

Explanation:

6 0
2 years ago
An ac generator consists of a coil with 40 turns of wire, each with an area of 0.06 m2 . The coil rotates in a uniform magnetic
mezya [45]

Answer:

d. 332 V

Explanation:

Given;

number of turns in the wire, N = 40 turns

area of the coil, A = 0.06 m²

magnitude of the magnetic field, B = 0.4 T

frequency of the wave, f = 55 Hz

The maximum emf induced in the coil is given by;

E = NBAω

Where;

ω is angular velocity = 2πf

E = NBA(2πf)

E = 40 x 0.4 x 0.06 x (2 x π x 55)

E = 332 V

Therefore, the maximum induced emf in the coil is 332 V.

The correct option is "D"

d. 332 V

7 0
3 years ago
An eagle carries a fish up 50 m into the sky using 90 N of force. How much work did the eagle do on the fish? (Work: W = Fd)
Leno4ka [110]
<span>Work: W = Fd. 50(distance) multiplied by 90(force) would equal 4500 J or, answer D</span>
4 0
3 years ago
Read 2 more answers
Physics B 2020 Unit 3 Test
weqwewe [10]

Answer:

1)

When a charge is in motion in a magnetic field, the charge experiences a force of magnitude

F=qvB sin \theta

where here:

For the proton in this problem:

q=1.602\cdot 10^{-19}C is the charge of the proton

v = 300 m/s is the speed of the proton

B = 19 T is the magnetic field

\theta=65^{\circ} is the angle between the directions of v and B

So the force is

F=(1.602\cdot 10^{-19})(300)(19)(sin 65^{\circ})=8.28\cdot 10^{-16} N

2)

The magnetic field produced by a bar magnet has field lines going from the North pole towards the South Pole.

The density of the field lines at any point tells how strong is the magnetic field at that point.

If we observe the field lines around a magnet, we observe that:

- The density of field lines is higher near the Poles

- The density of field lines is lower far from the Poles

Therefore, this means that the magnetic field of a magnet is stronger near the North and South Pole.

3)

The right hand rule gives the direction of the  force experienced by a charged particle moving in a magnetic field.

It can be applied as follows:

- Direction of index finger = direction of motion of the charge

- Direction of middle finger = direction of magnetic field

- Direction of thumb = direction of the force (for a negative charge, the direction must be reversed)

In this problem:

- Direction of motion = to the right (index finger)

- Direction of field = downward (middle finger)

- Direction of force = into the screen (thumb)

4)

The radius of a particle moving in a magnetic field is given by:

r=\frac{mv}{qB}

where here we have:

m=6.64\cdot 10^{-22} kg is the mass of the alpha particle

v=2155 m/s is the speed of the alpha particle

q=2\cdot 1.602\cdot 10^{-19}=3.204\cdot 10^{-19}C is the charge of the alpha particle

B = 12.2 T is the strength of the magnetic field

Substituting, we find:

r=\frac{(6.64\cdot 10^{-22})(2155)}{(3.204\cdot 10^{-19})(12.2)}=0.366 m

5)

The cyclotron frequency of a charged particle in circular motion in a magnetic field is:

f=\frac{qB}{2\pi m}

where here:

q=1.602\cdot 10^{-19}C is the charge of the electron

B = 0.0045 T is the strength of the magnetic field

m=9.31\cdot 10^{-31} kg is the mass of the electron

Substituting, we find:

f=\frac{(1.602\cdot 10^{-19})(0.0045)}{2\pi (9.31\cdot 10^{-31})}=1.23\cdot 10^8 Hz

6)

When a charged particle moves in a magnetic field, its path has a helical shape, because it is the composition of two motions:

1- A uniform motion in a certain direction

2- A circular motion in the direction perpendicular to the magnetic field

The second motion is due to the presence of the magnetic force. However, we know that the direction of the magnetic force depends on the sign of the charge: when the sign of the charge is changed, the direction of the force is reversed.

Therefore in this case, when the particle gains the opposite charge, the circular motion 2) changes sign, so the path will remains helical, but it reverses direction.

7)

The electromotive force induced in a conducting loop due to electromagnetic induction is given by Faraday-Newmann-Lenz:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

From the formula, we see that the emf is induced in the loop (and so, a current is also induced) only if \Delta \Phi \neq 0, which means only if there is a change in magnetic flux through the loop: this occurs if the magnetic field is changing, or if the area of the loop is changing, or if the angle between the loop and the field is changing.

8)

The flux is calculated as

\Phi = BA sin \theta

where

B = 5.5 T is the strength of the magnetic field

A is the area of the coil

\theta=18^{\circ} is the angle between the  direction of the field and the plane of the loop

Here the loop is rectangular with lenght 15 cm and width 8 cm, so the area is

A=(0.15 m)(0.08 m)=0.012 m^2

So the flux is

\Phi = (5.5)(0.012)(sin 18^{\circ})=0.021 Wb

See the last 7 answers in the attached document.

Download docx
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> docx </span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> pdf </span>
5 0
3 years ago
Other questions:
  • How far will a football travel if it is booted at a speed of 15 m/s and travels for 3 seconds?
    12·1 answer
  • The product of the synthesis reaction between sodium and chlorine gas is ?
    5·1 answer
  • In an experiment different wavelengths of light, all able to eject photoelectrons, shine on a freshly prepared (oxide-free) zinc
    5·1 answer
  • On an asteroid, the density of dust particles at a height of 3 cm is ~30% of its value just above the surface of the asteroid. A
    11·1 answer
  • An ice cube of mass 50.0g can slide without friction up and down a 25.0 degree slope. The ice cube is pressed against a spring a
    12·2 answers
  • Propane burns in oxygen to produce carbon dioxide and water. What are the chemical formulas of the reactants and products? The f
    6·2 answers
  • Car B is being pushed by a force of 22000 N. If it has a mass of 1375 kg.,
    7·1 answer
  • What is the voltage across resistor #2? (must include unit - V)
    12·1 answer
  • Inertia causes bodies to slow in their motion, unless they’re pushed by a force.
    12·1 answer
  • How to find angular velocity of an object traveling at a constant speed.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!