Given Information:
Power of bulb = w = 25 W
atts
distance = d = 9.5 cm = 0.095 m
Required Information:
Radiation Pressure = ?
Answer:
Radiation Pressure =7.34x10⁻⁷ N/m²
Explanation:
We know that radiation pressure is given by
P = I/c
Where I is the intensity of radiation and is given by
I = w/4πd²
Where w is the power of the bulb in watts and d is the distance from the center of the bulb.
So the radiation pressure becomes
P = w/c4πd²
Where c = 3x10⁸ m/s is the speed of light
P = 25/(3x10⁸*4*π*0.095²)
P = 7.34x10⁻⁷ N/m²
Therefore, the radiation pressure due to a 25 W bulb at a distance of 9.5 cm from the center of the bulb is 7.34x10⁻⁷ N/m²
Frequency is given in units of Hertz (Hz) and is defined as the number of cycles per second. The sound wave has 30,000 cycles per second, so its frequency is 30,000Hz.
This is more conveniently expressed as 30kHz, where the k indicates a multiplier of 1,000.
Answer:
Distance = 26.0m Displacement = 4.0m
Explanation:
Distance specifies only how far an object has traveled while displacement is the distance traveled in a specified direction.
Total distance traveled by the object will be distance travelled through north + distance travelled through south i.e 15.0m + 11.0m = 26.0m
Displacement is gotten by using the Pythagoras theorem. Since the object traveled in the same vertical direction (15.0m through north which is upward i.e positive y direction and 11.0m through south i.e in the negative y direction), the displacement will be 15.0m - 11.0m = 4.0m
In physics, there are empirical values for common important parameters. For example, the speed of sound is equal to 340 meters per second. Unlike the speed of light, the speed of sound is dependent on temperature and pressure. But in standard room conditions, the speed is 340 m/s. Using this value of speed, we can find the depth given the time. You should also note that the distance the echo travels is exactly the same distance that object travelled. Therefore,
Distance = 340 m/s * 6 seconds
Distance = 2,040 meters deep