Answer:
6*10^-3
Hope it helps
Procedure in the attached file
Molar mass <span>Aluminium ( Al) = 26.98 g/mol
1 mole ------------ 26.98 g
? mole ----------- 2.98 g
moles Al = 2.98 x 1 / 26.98
moles Al = 2.98 / 26.98
= 0.110 moles
hope this helps!
</span>
<span>In physics, the law of conservation of energy states that the total energy of an isolated system remains constant—it is said to be conserved over time. Energy can neither be created nor destroyed; rather, it transforms from one form to another.</span>
Answer:
The same
Explanation:
In a saturated solution, the rate of dissolution is equal and the same to the rate of crystallization.
- A saturated solution of as substance (solute) at a particular temperature is one which contains the maximum amount of the substance that can dissolve at that temperature in the presence of the crystals of the substance.
- It is an equilibrium system in which a solid substance is in equilibrium with its own ions in solution.
- Therefore the rate of dissolution will the same with that of crystallization.
Answer:
The value of dissociation constant of the monoprotic acid is
.
Explanation:
The pH of the solution = 2.46
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![2.46=-\log[H^+]](https://tex.z-dn.net/?f=2.46%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=0.003467 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.003467%20M)

Initially
0.0144 0 0
At equilibrium
(0.0144-x) x x
The expression if an dissociation constant is given by :
![K_a=\frac{[A^-][H^+]}{[HA]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BA%5E-%5D%5BH%5E%2B%5D%7D%7B%5BHA%5D%7D)

![x=[H^+]=0.003467 M](https://tex.z-dn.net/?f=x%3D%5BH%5E%2B%5D%3D0.003467%20M)


The value of dissociation constant of the monoprotic acid is
.