Answer:
0.297 °C
Step-by-step explanation:
The formula for the <em>freezing point depression </em>ΔT_f is
ΔT_f = iK_f·b
i is the van’t Hoff factor: the number of moles of particles you get from a solute.
For glucose,
glucose(s) ⟶ glucose(aq)
1 mole glucose ⟶ 1 mol particles i = 1
Data:
Mass of glucose = 10.20 g
Mass of water = 355 g
ΔT_f = 1.86 °C·kg·mol⁻¹
Calculations:
(a) <em>Moles of glucose
</em>
n = 10.20 g × (1 mol/180.16 g)
= 0.056 62 mol
(b) <em>Kilograms of water
</em>
m = 355 g × (1 kg/1000 g)
= 0.355 kg
(c) <em>Molal concentration
</em>
b = moles of solute/kilograms of solvent
= 0.056 62 mol/0.355 kg
= 0.1595 mol·kg⁻¹
(d) <em>Freezing point depression
</em>
ΔT_f = 1 × 1.86 × 0.1595
= 0.297 °C
42.4 ml is the volume in milliliters of the lead ball if a lead ball is added to a graduated cylinder containing 50.6 ml of water.
<h3>What is a graduated cylinder?</h3>
A tall narrow container with a volume scale is used especially for measuring liquids.
The graduated cylinder contains water
mL is a volume unit.
Water volume = 50.6 ml
The lead ball caused an increase in volume from 50.6 ml to 93.0 mL.
The new volume is the lead ball volume plus the original water volume :
Final volume = Vlead ball+ Water original volume



Hence, 42.4 ml is the volume in milliliters of the lead ball.
Learn more about the graduated cylinder here:
brainly.com/question/13386106
#SPJ1
Answer:
The correct option is e
Explanation:
Hydrogen bond is an intermolecular interaction/bonding that are formed between an electronegative atom (such as nitrogen, oxygen and fluorine) and a hydrogen atom. They are weak intermolecular bonds compared to covalent bonds but account for the high boiling point of water because of the strong hydrogen bond presence between the water molecules. Water molecules form hydrogen bonds between each other; since an oxygen atom (in a water molecule) has two lone pairs on it's outermost shell, it forms an hydrogen bond with two hydrogen atoms of other water molecule. Due to the fluidity of liquid water molecules, hydrogen bonds keep getting broken (although recreated/formed almost immediately), hence, individual hydrogen bonds in liquid water does not exist for long.
In the explanation above, it was stated that the strength of the hydrogen bond in water is the reason for it's high boiling point. The atoms in a water molecule are bent NOT linear hence the strength of hydrogen bond does not depend on the linearity of the atoms involved in the bond.
Answer:
Perigee
Explanation:
In Perigee, The moon appears closer.