Explanation:
As it is given that water level is same as outside which means that theoretically, P = 756.0 torr.
So, using ideal gas equation we will calculate the number of moles as follows.
PV = nRT
or, n =
=
= 0.0052 mol
Also, No. of moles =
0.0052 mol =
mass = 0.0104 g
As some of the water over which the hydrogen gas has been collected is present in the form of water vapor. Therefore, at
= 24 mm Hg
= atm
= 0.03158 atm
Now, P =
= 0.963 atm
Hence, n =
= 0.0056 mol
So, mass of = 0.0056 mol × 2
= 0.01013 g (actual yield)
Therefore, calculate the percentage yield as follows.
Percent yield =
=
= 97.49%
Thus, we can conclude that the percent yield of hydrogen for the given reaction is 97.49%.
Q1)
firstly we need to determine the empirical formula of the compound. empirical formula is the simplest ratio of components in the compound.
percentages of the elements have been given, so lets assume we are calculating for a compound of 100g
C H O
mass 63.13 g 8.830 g 28.03 g
molar mass 12 g/mol 1 g/mol 16 g/mol
number of moles 63.13/12 8.830/1 28.03/16
5.26 8.830 1.75
divide by the smallest number of moles
5.26/1.75 8.830/1.75 1.75/1.75
= 3.01 = 5.04 =1
rounded off to the nearest whole numbers
C - 3
H - 5
O - 1
therefore empirical formula = C₃H₅O
Q2)
we have to next determine the molecular formula of the compound
molecular formula gives the actual composition of elements in the compound.
since we know the empirical formula and molecular mass, we can find how many empirical units are in the molecular formula.
mass of empirical unit = Cx3 + Hx5 + Ox1
= 12 g/mol x 3 + 1g/mol x 5 + 16 g/mol x 1
= 36 + 5 + 16 = 57 g/mol
the molecular mass = 228 g/mol
then number of empirical units in the molecular formula = 228 / 57 = 4
therefore there are 4 empirical units
then the molecular formula = 4 x empirical formula =4 (C₃H₅O)
molecular formula = C₁₂H₂₀O₄
the answer equals to 29000