Needs are less than resources, and the population increases.
Answer:
Coefficient of friction will be 0.587
Explanation:
We have given mass of the car m = 500 kg
Distance s = 18.25 m
Initial velocity of the car u = 14.5 m/sec
As the car finally stops so final velocity v = 0 m/sec
From second equation of motion



We know that acceleration is given by



So coefficient of friction will be 0.587
Answer:
Option (D)
Explanation:
The velocity at which blood flows in the blood vessels is inversely proportional to the total cross-sectional area of the blood vessels present in the body. This means that if the cross sectional area of the vessels low, then there will be high rate of blood flow, and vice versa. This blood flow is minimum in the case of capillaries, where it gets enough time for the exchanging of essential nutrients as well as gases.
Thus, the correct answer is option (D).
Answer:
C
Explanation:
- Let acceleration due to gravity @ massive planet be a = 30 m/s^2
- Let acceleration due to gravity @ earth be g = 30 m/s^2
Solution:
- The average time taken for the ball to cover a distance h from chin to ground with acceleration a on massive planet is:
t = v / a
t = v / 30
- The average time taken for the ball to cover a distance h from chin to ground with acceleration g on earth is:
t = v / g
t = v / 9.81
- Hence, we can see the average time taken by the ball on massive planet is less than that on earth to reach back to its initial position. Hence, option C