<u>Answer:</u>
<em>Thunderbird is 995.157 meters behind the Mercedes</em>
<u>Explanation:</u>
It is given that all the cars were moving at a speed of 71 m/s when the driver of Thunderbird decided to take a pit stop and slows down for 250 m. She spent 5 seconds in the pit stop.
Here final velocity 
initial velocity
distance
Distance covered in the slowing down phase = 







The car is in the pit stop for 5s 
After restart it accelerates for 350 m to reach the earlier velocity 71 m/s





total time= 
Distance covered by the Mercedes Benz during this time is given by 
Distance covered by the Thunderbird during this time=
Difference between distance covered by the Mercedes and Thunderbird
= 
Thus the Mercedes is 995.157 m ahead of the Thunderbird.
Answer:
B) the change in momentum.
Explanation:
The impulse is defined as the product between the force applied on an object (F) and the duration of the collision (
):
(1)
We can rewrite the force by using Newton's second law, as the product between mass (m) and acceleration (a):

So, (1) becomes

Now we can also rewrite the acceleration as ratio between the change in velocity and change in time:
. If we substitute into the previous equation, we find

And the quantity
is equivalent to the change in momentum,
.
Answer: 10.2 kg if g = 9.8, 10 if g = 10.
Explanation:
Weight or the "force of gravity" on a person is simply defined by the equation: F = ma. In this case, the acceleration is g, which is 9.8 but can be rounded up to 10. Based on this, we have:
F = mg
100 = m*9.8
m = 10.2(or 10 if we set g to 10).
Answer:
8050 J
Explanation:
Given:
r = 4.6 m
I = 200 kg m²
F = 26.0 N
t = 15.0 s
First, find the angular acceleration.
∑τ = Iα
Fr = Iα
α = Fr / I
α = (26.0 N) (4.6 m) / (200 kg m²)
α = 0.598 rad/s²
Now you can find the final angular velocity, then use that to find the rotational energy:
ω = αt
ω = (0.598 rad/s²) (15.0 s)
ω = 8.97 rad/s
W = ½ I ω²
W = ½ (200 kg m²) (8.97 rad/s)²
W = 8050 J
Or you can find the angular displacement and find the work done that way:
θ = θ₀ + ω₀ t + ½ αt²
θ = ½ (0.598 rad/s²) (15.0 s)²
θ = 67.3 rad
W = τθ
W = Frθ
W = (26.0 N) (4.6 m) (67.3 rad)
W = 8050 J