Answer:
=3.5 m/s
Explanation:
y = x tanθ - 1/2 g x² / (u²cos²θ )
y = 0.25 , x = 0.5, θ = 40°
.25 = .50 tan40 - .5 x 9.8x x²/ u²cos²40
.25 = .42 - 2.0875/u²
u = 3.5 m / s.
<h2>
Answer: 277.777 m</h2>
Explanation:
The situation described here is parabolic movement. However, as we are told that the rock was<u> projected upward from the surface</u>, we will only use the equations related to the Y axis.
In this sense, the movement equations in the Y axis are:
(1)
(2)
Where:
is the rock's final position
is the rock's initial position
is the rock's initial velocity
is the final velocity
is the time the parabolic movement lasts
is the acceleration due to gravity at the surface of the moon
As we know
, equation (2) is rewritten as:
(3)
On the other hand, the maximum height is accomplished when
:
(4)
(5)
Finding
:
(6)
Substituting (6) in (3):
(7)
(8) Now we can calculate the maximum height of the rock
(9)
Finally:
Answer: Load divided by it effort
Explanation:
Mechanical advantage of any machine is its load divided by its effort
Answer:
Explained below
Explanation:
When we eat food, our body gets chemical energy from it. Now, this chemical energy from the food is changed into some different energy forms that is useful to it. They include:
-Chemical to mechanical energy to aid in movement of muscles
- chemical to thermal energy to aid in regulating the body temperature.
- chemical to electrical energy to aid the brain in thinking.
Thus is similar to how a machine converts energy because machines also generate energy after being powered and convert to other forms of energy. For example, an alarm clock converts electrical energy to sound energy, hair dryer converts electrical energy to thermal/heat energy.
At Korona100 I don’t think it’s 10, becz I remember having this question on my test/ quiz but I got it incorrect so yeah.