Answer:
H = 1/2 g t^2 where t is time to fall a height H
H = 1/8 g T^2 where T is total time in air (2 t = T)
R = V T cos θ horizontal range
3/4 g T^2 = V T cos θ 6 H = R given in problem
cos θ = 3 g T / (4 V) (I)
Now t = V sin θ / g time for projectile to fall from max height
T = 2 V sin θ / g
T / V = 2 sin θ / g
cos θ = 3 g / 4 (T / V) from (I)
cos θ = 3 g / 4 * 2 sin V / g = 6 / 4 sin θ
tan θ = 2/3
θ = 33.7 deg
As a check- let V = 100 m/s
Vx = 100 cos 33.7 = 83,2
Vy = 100 sin 33,7 = 55.5
T = 2 * 55.5 / 9.8 = 11.3 sec
H = 1/2 * 9.8 * (11.3 / 2)^2 = 156
R = 83.2 * 11.3 = 932
R / H = 932 / 156 = 5.97 6 within rounding
Answer:

Explanation:
Since fluid is pumping in and out at the same rate (5L/min), the total fluid volume in the tank stays constant at 350L. Only the amount of salt and its concentration changed overtime.
Let A(t) be the amount of salt (g) at time t and C(t) (g/L) be the concentration at time t
A(0) = 10 g
Brine with concentration of 1g/L is pouring in at the rate of 5L/min so the salt income rate is 5 g/min
The well-mixed solution is pouring out at the rate of 5L/min at concentration C(t) so the salt outcome rate is 5C g/min
But the concentration is total amount of salt over 350L constant volume
C = A / 350
Therefore our rate of change for salt A' is
A' = 5 - 5A/350 = 5 - A/70
This is a first-order linear ordinary differential equation and it has the form of y' = a + by. The solution of this is

So 
with A(0) = 10
c + 350 = 10
c = 10 - 350 = -340

Answer:
I guess sound wave I s gonna be d right answer
Explanation:
cos sound doesnt has weight and occupies space
Answer:
A) The continents and ocean basins undergo continuous change. Both are parts of lithospheric plates that move against each other. B) Divergent plate in Mid-Atlantic Ridge with material flowing into the ocean. C) A plate moved over a stationary site of magma upwelling "Hot Spot" and created a volcanic island chain over the time
Explanation:
A) The basic thought is, that instead of being permanent fixtures of the earth's surface, the continents and ocean basins undergo continuous change. Both are parts of lithospheric plates that move against each other, and in the process new crust is created at midoceanic ridges (spreading centers), and old crust is consumed at convergent plate boundaries (subduction zones).
B) There are basically three different types of plate boundaries:
Divergent boundaries -- where new crust is generated as the plates pull away from each other.
Convergent boundaries -- where crust is destroyed as one plate dives under another.
Transform boundaries -- where crust is neither produced nor destroyed as the plates slide horizontally past each other.
The best known of the divergent boundaries is the Mid-Atlantic Ridge. This submerged mountain range, which extends from the Arctic Ocean to beyond the southern tip of Africa, is but one segment of the global mid-ocean ridge system that encircles the Earth.
C) The linear arrangement of many seamounts indicates that they formed because the plate moved over a stationary site of magma upwelling, a so called mantle "Hot Spot". Seamounts are submarine volcanoes that may finally build above the water level, in which case they are called islands. If seamounts rise above sea level (due to buildup of material in a cone or upwelling mantle pushes up plate), they are subject to wave erosion and colonization by reefs, with both processes tending to create a flat top on the original volcanic cone.
Answer:
F, = 12N. F, = 2 N. Block. 4) a 20.0-kg mass moving at 1.00 m/s.
Explanation: