<u>Answer:</u> The outermost valence electron enters the p orbital.
<u>Explanation:</u>
Valence electrons are defined as the electrons which are present in outer most orbital of an atom.
Sulfur is the 16th element of the periodic table having 16 electrons.
Electronic configuration of sulfur atom is 
The number of valence electrons are 2 + 4 = 6
These 6 electrons enter s-orbital and p-orbital but the outermost valence electron will enter the p-orbital.
Hence, the outermost valence electron enters p orbital.
<span>The correct answer is either Chrome (Chromium), or Aluminum. Unlike steel, these two don't rust easily and can be polished to be quite shiny, especially Chromium, which is why you'll always hear people who like cars talking about chrome wheels and chrome spoilers and things like that. They are not that good for bumpy or roads that are full of holes because they can bend much easier than steel so it can be expensive to maintain.</span>
It's lone a little distinction (103 degrees versus 104 degrees in water), and I trust the standard rationalization is that since F is more electronegative than H, the electrons in the O-F bond invest more energy far from the O (and near the F) than the electrons in the O-H bond. That moves the powerful focal point of the unpleasant constrain between the bonding sets far from the O, and thus far from each other. So the shock between the bonding sets is marginally less, while the repugnance between the solitary matches on the O is the same - the outcome is the edge between the bonds is somewhat less.
Gray matter hope this helps!