Answer:What is the question
Explanation:
Answer:
Mg+F2= Mgf2
Explanation:
F 2 is an oxidizing agent, Mg is a reducing agent. ; Pale-yellow to greenish gas with a pungent, irritating odor.
Explanation:
It will have to change its form in order for the cell to focus on developing and retaining a viable, in order to be large and narrow as in the situation of the nerve cells or to build a more 'contoured' surface, that is, to establish microvillus.
Answer:
0.42 g
Explanation:
<u>We have: </u>
pH = 12.10 (25 °C)
V = 800.0 mL = 0.800 L
To find the mass of sodium hydroxide (NaOH) we can use the pH:


![pOH = -log ([OH^{-}])](https://tex.z-dn.net/?f=%20pOH%20%3D%20-log%20%28%5BOH%5E%7B-%7D%5D%29%20)
![[OH]^{-} = 10^{-pOH} = 10^{-1.90} = 0.013 M](https://tex.z-dn.net/?f=%5BOH%5D%5E%7B-%7D%20%3D%2010%5E%7B-pOH%7D%20%3D%2010%5E%7B-1.90%7D%20%3D%200.013%20M)
Now, we can find the number of moles (η) of OH:
Since we have 1 mol of OH in 1 mol of NaOH, the number of moles of NaOH is equal to 1.04x10⁻² moles.
Finally, with the number of moles we can find the mass of NaOH:

<em>Where M is the molar mass of NaOH = 39.9 g/mol </em>

Therefore, the mass of sodium hydroxide that the chemist must weigh out in the second step is 0.42 g.
I hope it helps you!
<span>The mass and volume of each sample differ from the mass and volume of the other samples. Is it possible for each sample to contain 1 mol of each substance?
</span><span>C) Yes, because the number of moles is not dependent on the mass or the volume.</span>