Answer:
A
Explanation:
A farthest apart at the poles where the magnetic field is strongest
Answer:
a) 3.98 x 10^-10
Explanation:
Hello,
In this case, for the given pH, we can compute the concentration of hydronium by using the following formula:
![pH=-log([H^+])](https://tex.z-dn.net/?f=pH%3D-log%28%5BH%5E%2B%5D%29)
Hence, solving for the concentration of hydronium:
![[H^+]=10^{-pH}=10^{-9.40}\\](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-9.40%7D%5C%5C)
![[H^+]=3.98x10^{-10}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D3.98x10%5E%7B-10%7DM)
Therefore, answer is a) 3.98 x 10^-10
Best regards.
Answer:
Nuclear power comes from nuclear fission
Nuclear power plants use heat produced during nuclear fission to heat water. In nuclear fission, atoms are split apart to form smaller atoms, releasing energy. Fission takes place inside the reactor of a nuclear power plan
Explanation:
Answer:
5.3%
Explanation:
Let the volume be 1 L
volume , V = 1 L
use:
number of mol,
n = Molarity * Volume
= 0.8846*1
= 0.8846 mol
Molar mass of CH3COOH,
MM = 2*MM(C) + 4*MM(H) + 2*MM(O)
= 2*12.01 + 4*1.008 + 2*16.0
= 60.052 g/mol
use:
mass of CH3COOH,
m = number of mol * molar mass
= 0.8846 mol * 60.05 g/mol
= 53.12 g
volume of solution = 1 L = 1000 mL
density of solution = 1.00 g/mL
Use:
mass of solution = density * volume
= 1.00 g/mL * 1000 mL
= 1000 g
Now use:
mass % of acetic acid = mass of acetic acid * 100 / mass of solution
= 53.12 * 100 / 1000
= 5.312 %
≅ 5.3%
.5 mol of A will be left over since 1.5 mol of A will be used for every 3 mol of B due to the 2:1 ratio established by the formula.