Deposition is your answer
2-bromo-3,4-dimethylpentane is combined with t-butoxide. The product of this reaction is 3,4 dimethyl - 1- pentene.
The reaction of 2-bromo-3,4-dimethylpentane is combined with t-butoxide forms 2 alkene in the elimination reaction due to steric hindrance. The least stable alkene 3,4 dimethyl - 1- pentene is easy to make. the t-butoxide is (CH₃)₃CO⁻. The reaction involves in this reaction is E2 elimination reaction. This reaction involves the one step reaction. The product will also form that is 3,4 dimethyl - 2 - pentene. so the reaction involve Elimination reaction and the product due to steric hindrance is 3,4 dimethyl - 1- pentene
Thus, 2-bromo-3,4-dimethylpentane is combined with t-butoxide. The product of this reaction is 3,4 dimethyl - 1- pentene.
To learn more about t-butoxide here
brainly.com/question/12303978
#SPJ4
Answer:
v = 2,66x10⁻⁵ P[H₂C₂O₄]
Explanation:
For the reaction:
H₂C₂O₄(g) → CO₂(g) + HCOOH(g)
At t = 0, the initial pressure is just of H₂C₂O₄(g). At t= 20000 s, pressures will be:
H₂C₂O₄(g) = P₀ - x
CO₂(g) = x
HCOOH(g) = x
P at t=20000 is:
P₀ - x + x + x = P₀+x. That means P at t=20000s - P₀ = x
For 1st point:
x = 92,8-65,8 = 27
Pressure of H₂C₂O₄(g) at t=20000s: 65,8-27 = 38,8
2nd point:
x = 130-92,1 = 37,9
H₂C₂O₄(g): 92,1 - 37,9 = 54,2
3rd point:
x = 157-111 = 46
H₂C₂O₄(g): 111-46 = 65
Now, as the rate law is :
v = k P[H₂C₂O₄]
Based on integrated rate law, k is:
(- ln P[H₂C₂O₄] + ln P[H₂C₂O₄]₀) / t = k
1st point:
k = 2,64x10⁻⁵
2nd point:
k = 2,65x10⁻⁵
3rd point:
k = 2,68x10⁻⁵
The averrage of this values is:
k = 2,66x10⁻⁵
That means law is:
v = 2,66x10⁻⁵ P[H₂C₂O₄]
I hope it helps!
The model of the atom has dramatically changed over many many years.We learned atoms make up different substances and are the smallest particles of matter, which have subatomic particles that are very small portions of matter. At first scientist only thought there were electrons which are negatively charged.
The Mesosphere, like the troposphere layer, has a decrease in temperature with altitude because of the decreases in the density of the air molecules. Thermosphere: As the altitude increases, the air temperature increases.