Answer:
300m/s
Explanation:
velocity = frequency(wavelength)
Since 10 waves pass a point each second, frequency is 10
therefore, speed = (10)(30 = 300m/s
Answer:
129900
Explanation:
Given that
Mass of the particle, m = 1 g = 1*10^-3 kg
Speed of the particle, u = ½c
Speed of light, c = 3*10^8
To solve this, we will use the formula
p = ymu, where
y = √[1 - (u²/c²)]
Let's solve for y, first. We have
y = √[1 - (1.5*10^8²/3*10^8²)]
y = √(1 - ½²)
y = √(1 - ¼)
y = √0.75
y = 0.8660, using our newly gotten y, we use it to solve the final equation
p = ymu
p = 0.866 * 1*10^-3 * 1.5*10^8
p = 129900 kgm/s
thus, we have found that the momentum of the particle is 129900 kgm/s
Resistance is current x potential difference. So therefor run wafff
Answer with Explanation:
a. Option d is true.
a negatively charged plane parallel to the end faces of the cylinder
b. Radius of cylinder, r=0.66m
Magnitude of electric field, E=300 N/C
We have to find the net flux through the closed surface.
Net electric flux,


c.
Net charge,
Where




Where 
Explanation:
It is given that,
Length of the helicopter, l = 3.1 m
The helicopter rotates, the length of helicopter will become the radius of circular path, r = 3.1 m
Angular speed of the helicopter, 
(a) The centripetal acceleration in terms of angular velocity is given by :



(b) Let v is the linear speed of the tip. The relation between the linear and angular speed is given by :


v = 90.89 m/s

Hence, this is the required solution.