1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
faust18 [17]
3 years ago
15

A projectile is launched from the ground with an initial velocity of 12ms at an angle of 30° above the horizontal. The projectil

e lands on a hill 7.5m away. The height at which the projectile lands is most nearly
A- 1.78m
B- 3.10m
C- 5.34m
D- 6.68m
E- 12.0m
Physics
2 answers:
Keith_Richards [23]3 years ago
7 0

Answer:gggffdss

Explanation:cc bbhfewaz

netineya [11]3 years ago
6 0

vi^{2}sin2thita/g =12^{2}sin2[30]/9.8=12.7Answer:

Explanation:

range is given as

You might be interested in
If you can simply pour sand into a cup then why is it not a liquid?
sleet_krkn [62]
If you, for example, poured it onto a wide cup with a volume equal to the total volume of the sand particles, the sand would not spread out to fill the container but would bunch up together in the middle.
6 0
3 years ago
Read 2 more answers
A man standing on a bus remains still when the bus is at rest. When the bus moves forward and then slows down the man continues
Stells [14]
C. inertia.  the man is sent flying off the bus because of his weight and the sudden stop of the bus. this effect is called inertia. an example of gravity would be throwing an apple up and having it come to the ground. an example of weight would be putting a man and an elephant on a scale and having the elephant come down while the man goes up.
6 0
3 years ago
What force is necessary to accelerate a 5.0 kg mass from rest to a final velocity of 10.0 m/s in 5.0 s?
vesna_86 [32]

Answer:

10 N

Explanation:

F = ma = m(Δv/t) = 5.0(10.0 - 0)/5.0 = 10 N

4 0
3 years ago
mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 2 feet below the equi
valina [46]

Answer:

The answer is

"x(t)= e^\frac{-t}{2}((\frac{-4}{3})\cos\frac{\sqrt{47}}{2}t- \frac{-64\sqrt{47}}{141} \sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}(\cos(3t)+ \sin (3t))".

Explanation:

Taking into consideration a volume weight = 16 pounds originally extends a springs \frac{8}{3} feet but is extracted to resting at 2 feet beneath balance position.

The mass value is =

W=mg\\m=\frac{w}{g}\\m=\frac{16}{32}\\m= \frac{1}{2} slug\\

The source of the hooks law is stable,

16= \frac{8}{3} k \\\\8k=16 \times 3 \\\\k=16\times \frac{3}{8} \\\\k=6 \frac{lb}{ft}\\\\

Number \frac{1}{2}  times the immediate speed, i.e .. Damping force

\frac{1}{2} \frac{d^2 x}{dt^2} = -6x-\frac{1}{2}\frac{dx}{dt}+10 \cos 3t \\\\\frac{1}{2}  \frac{d^2 x}{dt^2}+ \frac{1}{2}\frac{dx}{dt}+6x =10 \cos 3t \\ \\\frac{d^2 x}{dt^2} +\frac{dx}{dt}+12x=20\cos 3t \\\\

The m^2+m+12=0 and m is an auxiliary equation,

m=\frac{-1 \pm \sqrt{1-4(12)}}{2}\\\\m=\frac{-1 \pm \sqrt{47i}}{2}\\\\\ m1= \frac{-1 + \sqrt{47i}}{2} \ \ \ \ or\ \ \ \ \  m2 =\frac{-1 - \sqrt{47i}}{2}

Therefore, additional feature

x_c (t) = e^{\frac{-t}{2}}[C_1 \cos \frac{\sqrt{47}}{2}t+ C_2 \sin \frac{\sqrt{47}}{2}t]

Use the form of uncertain coefficients to find a particular solution.  

Assume that solution equation,

x_p = Acos(3t)+B sin(3t) \\x_p'= -3A sin (3t) + 3B cos (3t)\\x_p}^{n= -9 Acos(3t) -9B sin (3t)\\

These values are replaced by equation ( 1):

\frac{d^2x}{dt}+\frac{dx}{dt}+ 12x=20 \cos(3t) -9 Acos(3t) -9B sin (3t) -3Asin(3t)+3B cos (3t) + 12A cos (3t) + 12B sin (3t)\\\\3Acos 3t + 3B sin 3t - 3Asin 3t + 3B cos 3t= 20cos(3t)\\(3A+3B)cos3t -(3A-3B)sin3t = 20 cos (3t)\\

Going to compare cos3 t and sin 3 t coefficients from both sides,  

The cost3 t is 3A + 3B= 20 coefficients  

The sin 3 t is 3B -3A = 0 coefficient  

The two equations solved:

3A+3B = 20 \\\frac{3B -3A=0}{}\\6B=20\\B= \frac{20}{6}\\B=\frac{10}{3}\\

Replace the very first equation with the meaning,

3B -3A=O\\3(\frac{10}{3})-3A =0\\A= \frac{10}{3}\\

equation is

x_p\\\\\frac{10}{3} cos (3 t) + \frac{10}{3} sin (3t)

The ultimate plan for both the equation is therefore

x(t)= e^\frac{-t}{2} (c_1 cos \frac{\sqrt{47}}{2}t)+c_2\sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}\cos (3t)+\frac{10}{3}\sin (3t)

Initially, the volume of rest x(0)=2 and x'(0) is extracted by rest i.e.  

Throughout the general solution, replace initial state x(0) = 2,

Replace x'(0)=0 with a general solution in the initial condition,

x(t)= e^\frac{-t}{2} [(c_1 cos \frac{\sqrt{47}}{2}t)+c_2\sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}\cos (3t)+\frac{10}{3}\sin (3t)]\\\\

x(t)= e^\frac{-t}{2} [(-\frac{\sqrt{47}}{2}c_1\sin\frac{\sqrt{47}}{2}t)+ (\frac{\sqrt{47}}{2}c_2\cos\frac{\sqrt{47}}{2}t)+c_2\cos\frac{\sqrt{47}}{2}t)  +c_1\cos\frac{\sqrt{47}}{2}t +c_2\sin\frac{\sqrt{47}}{2}t + \frac{-1}{2}e^{\frac{-t}{2}} -10 sin(3t)+10 cos(3t) \\\\

c_2=\frac{-64\sqrt{47}}{141}

x(t)= e^\frac{-t}{2}((\frac{-4}{3})\cos\frac{\sqrt{47}}{2}t- \frac{-64\sqrt{47}}{141} \sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}(\cos(3t)+ \sin (3t))

5 0
3 years ago
Which is an example of the deregulation of a government-regulated natural monopoly? A new law allows consumers to choose between
expeople1 [14]
<span>An example of the deregulation of a government regulated natural monopoly is where the new ;aw allows consumers to be able to choose between the electricity providers which is the first choice because a deregulation of a government regulated natural monopoly is a way of the rules of having to be remove or reduced when tackling or making use of the government regulated natural monopoly.</span>
7 0
3 years ago
Other questions:
  • A 1500 kg car is approaching a hill that has a height of 12 m. As the car reaches the bottom of the hill it runs out of gas and
    8·1 answer
  • By what factor must the sound intensity be increased to increase the sound intensity level by 12.5 db ?
    9·1 answer
  • If a car is moving to the left with constant velocity, one can conclude that If a car is moving to the left with constant veloci
    6·2 answers
  • A body moving at .500c with respect to an observer
    10·1 answer
  • A ball is thrown straight up. At what point does the ball have the most energy? Ignore air resistance.
    11·1 answer
  • A ball is dropped from the top of a building. The gravitational force is 10 N down, and the force of air resistance is 1 N up. W
    14·1 answer
  • A hiker is at the bottom of a canyon facing the canyon wall closest to her. She is 280.5 meters from the wall and the sound of h
    14·1 answer
  • Convection is the transfer of energy by the motion of heated particles in a fluid. according to this information,which statement
    13·1 answer
  • determine the magnitude of the flux in kg/s (no sign, just the magnitude) of air through the surface s. the density of air is 1.
    9·2 answers
  • What other objects in our solar systems might influence etiams movement as it travels through space? Why?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!