The elapsed time when the particle returns to the origin is determined from the ratio of initial velocity and acceleration of the particle.
<h3>Time of motion of the particle</h3>
The time of motion of the particle is calculated by applying Newton's second law of motion.
F = ma
F = m(v)/t
where;
- t is time of motion of the particle
- m is mass of the particle
- v is velocity of the particle
a = v - u/t
v = u + at
when the particle returns to the origin, direction of u, = negative.
final velocity = 0
0 = -u + at
at = u
t = u/a
Learn more about force here: brainly.com/question/12970081
#SPJ11
The correct answer is rock cycle
Longitudinal waves transfer energy parallel to the direction of the wave motion
If an experiment is conducted such that an applied force is exerted on an object, a student could use the graph to determine the net work done on the object.
The graph of the net force exerted on the object as a function of the object’s distance traveled is attached below.
- A student could use the graph to determine the net work done on the object by Calculating the area bound by the line of best fit and the horizontal axis from 0m to 5m
For more information on work done, visit
brainly.com/subject/physics
If the soloist produces "x" decibels and the 10-person choir produces "y" decibels, combined they will produce "x+y" decibels.
The second choir has 90 additional singers, we base our description on the first choir. If a 10-person choir produces "x+y" decibels, then the 90 person choir produces 10 (x+y) decibels.