Answer:
0.11 kg
Explanation:
Ft = MV
Ft = momentum 5.22kg m/s
M = mass
V = velocity 48.3m/s
Therefore
5.22 = M x 48.3
Divide both sides by 48.3
5.22/48.3 = M x 48.3/48.3
0.11 = M
M = 0.11kg
Answer:
Explanation:
There will be loss of potential energy due to loss of height and gain of kinetic energy .
loss of height = R - R cos 14 , R is radius of hemisphere .
R ( 1 - cos 12 )
= 13 ( 1 - .978 )
h = .286 m
loss of potential energy
= mgh
= m x 9.8 x .286
= 2.8 m
gain of kinetic energy
1/2 m v ² = mgh
v² = 2 g h
v² = 2 x 9.8 x 2.8
v = 7.40 m /s
Answer:
Yes, the rocks are made of matter
Explanation:
Let's remember the definition of matter.
Matter is all that has mass and occupies a place in space. Therefore, if we measure the mass of each rock we will know its mass, the other fact is that rocks like any particular body are occupying a place in an empty space.
The opposite of this is antimatter and can its extent be given by the quantum mechanics.
1. Magnetic properties of a substance depends on the structure of its valence electrons. It has something to do with orbitals so I suggest you study about molecular geometry of a compound/substance firstIt's the way a substance's atoms fit together, being pulled and pushed from all sides equally. exists in metallic bonds <span>if a substance is said to be magnetic, it is simply attracted by a magnet. if it is paramagnetic, it is repelled by a magnet.
2.</span>The magnetic field will be perpendicular to the electric field and vice versa<span>
An electric field is the area which surrounds an electric charge within which it is capable of exerting a perceptible force on another electric charge.
A magnetic field is the area of force surrounding a magnetic pole, or a current flowing through a conductor, in which there is a magnetic flux. A magnetic field can be produced when an electric current is passed through an electric circuit wound in a helix or solenoid.
The relationship that exists between an electric field and a magnetic field is one of electromagnetic interaction as a consequence of associating elementary particles.
The electrostatic force between charged particles is an example of this relationship.</span>