To solve this problem we will apply the concepts related to Newton's second law that relates force as the product between acceleration and mass. From there, we will get the acceleration. Finally, through the cinematic equations of motion we will find the time required by the object.
If the Force (F) is 42N on an object of mass (m) of 83000kg we have that the acceleration would be by Newton's second law.

Replacing,


The total speed change
we have that the value is 0.71m/s
If we know that acceleration is the change of speed in a fraction of time,

We have that,


Therefore the Rocket should be fired around to 1403.16s
"<em>The different types of radiation are defined by the the amount of </em><em>energy</em><em> found in the photons. Radio </em><em>waves</em><em> have photons with low energies, microwave photons have a little </em><em>more energy</em><em> than radio </em><em>waves</em><em>, infrared photons have still </em><em>more</em><em>, then visible, ultraviolet, X-rays, and, the </em><em>most</em><em> energetic of all, gamma-rays.</em>"
Again I think you did not give the right constants. So I would use the correct constants for mass of moon and distance from earth to moon.
<span>The formula for force of attraction between any two bodies in the universe
F = GMm / r^2. (Newton's Universal law of Gravitation).
G = Universal gravitational constant, G = 6.67 * 10 ^ -11 Nm^2 / kg^2.
M = Mass of Earth. = 5.97 x 10^24 kg.
m = mass of moon = 7.34 x 10^22 kg.
r = distance apart, between centers = in this case it is the distance from Earth to the Moon
= 3.8 x 10^8 m.
(Sorry I could not assume with the values you gave, they are wrong, and if we use them we would be insulting Physics).
So F = ((6.67 * 10 ^ -11)*(5.97 x 10^24)*(7.34 * 10^22)) / (3.8 x 10^8)^2.
Punch it all up in your calculator.
I used a Casio 991 calculator, it should be one of the best in the world.Really lovely calculator, that has helped me a lot in computations like this. I am thankful for the Calculator.
F = 2.0240 * 10^ 20 N.
So that's our answer.
Hurray!!</span>
The primary colors of light are red, blue and green.
There are the pigments like yellow, magenta and cyan that are the mixture of two primary colors.
For example, magenta is a mixture of red and blue color. Thus, it reflects the red and blue color. Also, magneta absorbs the green color.
These type of colors that reflects two primary colors and absorb one color are known as secondary pigments.
Hence, 2nd option is the correct answer.