Answer:
26 lbf
Explanation:
The mass of the satellite is the same regardless of where it is.
The weight however, depends on the acceleration of gravity.
The universal gravitation equation:
g = G * M / d^2
Where
G: universal gravitation constant (6.67*10^-11 m^3/(kg*s))
M: mass of the body causing the gravitational field (mass of Earth = 6*10^24 kg)
d: distance to that body
15000 miles = 24140 km
The distance is to the center of Earth.
Earth radius = 6371 km
Then:
d = 24140 + 6371 = 30511 km
g = 6.67*10^-11 * 6*10^24 / 30511000^2 = 0.43 m/s^2
Then we calculate the weight:
w = m * a
w = 270 * 0.43 = 116 N
116 N is 26 lbf
Answer:
Rate of Entropy =210.14 J/K-s
Explanation:
given data:
power delivered to input = 350 hp
power delivered to output = 250 hp
temperature of surface = 180°F
rate of entropy is given as
![Rate\ of\ entropy = \frac{Rate\ of \ heat\ released}{Temperature}](https://tex.z-dn.net/?f=Rate%5C%20%20of%5C%20entropy%20%20%3D%20%5Cfrac%7BRate%5C%20of%20%5C%20heat%5C%20%20released%7D%7BTemperature%7D)
T = 180°F = 82°C = 355 K
Rate of heat = (350 - 250) hp = 100 hp = 74600 W
Rate of Entropy![= \frac{74600}{355} = 210.14 J/K-s](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B74600%7D%7B355%7D%20%3D%20210.14%20J%2FK-s)
The load is 17156 N.
<u>Explanation:</u>
First compute the flexural strength from:
σ = FL / π![R^{3}](https://tex.z-dn.net/?f=R%5E%7B3%7D)
= 3000
(40
10^-3) / π (5
10^-3)^3
σ = 305
10^6 N / m^2.
We can now determine the load using:
F = 2σd^3 / 3L
= 2(305
10^6) (15
10^-3)^3 / 3(40
10^-3)
F = 17156 N.
Answer:
i dont know but i will take the points tho hahah
Explanation:
It’s in Wolfsburg Germany