Answer:
V = 0.30787 m³/s
m = 2.6963 kg/s
v2 = 0.3705 m³/s
v2 = 6.017 m/s
Explanation:
given data
diameter = 28 cm
steadily =200 kPa
temperature = 20°C
velocity = 5 m/s
solution
we know mass flow rate is
m = ρ A v
floe rate V = Av
m = ρ V
flow rate = V =
V = Av = 
V = 
V = 0.30787 m³/s
and
mass flow rate of the refrigerant is
m = ρ A v
m = ρ V
m =
= 
m = 2.6963 kg/s
and
velocity and volume flow rate at exit
velocity = mass × v
v2 = 2.6963 × 0.13741 = 0.3705 m³/s
and
v2 = A2×v2
v2 = 
v2 = 
v2 = 6.017 m/s
Answer:
The blue Prius, because the Mustang arrived almost in the same time. And when you arrive in an intersection at the same time of other vehicle you need yield for the car on your right if the car is on your left you have the right of way.
Explanation:
Answer:
1561.84 MPa
Explanation:
L=20 cm
d1=0.21 cm
d2=0.25 cm
F=5500 N
a) σ= F/A1= 5000/(π/4×(0.0025)^2)= 1018.5916 MPa
lateral strain= Δd/d1= (0.0021-0.0025)/0.0025= -0.16
longitudinal strain (ε_l)= -lateral strain/ν = -(-0.16)/0.3
(assuming a poisson's ration of 0.3)
ε_l =0.16/0.3 = 0.5333
b) σ_true= σ(1+ ε_l)= 1018.5916( 1+0.5333)
σ_true = 1561.84 MPa
ε_true = ln( 1+ε_l)= ln(1+0.5333)
ε_true= 0.4274222
The engineering stress on the rod when it is loaded with a 5500 N weight is 1561.84 MPa.